A NEW NON-MEASURABLE SET AS A VECTOR SPACE

SOON-YEONG CHUNG

ABSTRACT. We use Cauchy's functional equation to construct a new non-measurable set which is a (vector) subspace of $\mathbb R$ and is of a codimension 1, considering $\mathbb R$, the set of real numbers, as a vector space over a field $\mathbb Q$ of rational numbers. Moreover, we show that $\mathbb R$ can be partitioned into a countable family of disjoint non-measurable subsets.

In every book on classical measure theory it is not hard to find a statement given by G. Vitali that there exists a subset of \mathbb{R} which is not Lebesgue measurable. We call the subset a non-measurable set for simplicity.

In general the existence of non-measurable set is guaranteed by *the Axiom of Choice*, or equivalent theorems such as Hausdorff maximality principle, Zorn's lemma, and so on. Conversely, it is well known that the axiom of choice is essential for the existence.

Here we construct a new non-measurable set which is a (vector) subspace of \mathbb{R} , the set all real numbers, and has a codimension 1 when we consider \mathbb{R} as a vector space over a field \mathbb{Q} of rational numbers. We construct it via the Cauchy functional equation using a method which seems to be simpler, more heuristic and less logical, in author's opinion, than we have done with the classical one.

Moreover, it will be shown that \mathbb{R} can be expressed as a countable union of disjoint family of the non-measurable subspace and its translations.

First, consider the following famous Lemma whose proof is seen, for example, in [1]:

Received May 20, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 28A05.

Key words and phrases: non-measurable set.

This work was supported by grant No.1999-2-101-001-5 from KOSEF.

LEMMA 1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a (Lebesgue) measurable function satisfying

(1) Cauchy's Equation: f(x+y) = f(x) + f(y), $x, y \in \mathbb{R}$. Then f(x) = ax, $x \in \mathbb{R}$, for a constant a = f(1).

Throughout this \mathbb{R} is considered as a vector space over a field \mathbb{Q} . First of all, with the help of Hausdorff maximality principle we take a maximal linearly independent subset Λ containing the number 1 as an element. We write the set as

$$\Lambda = \{1\} \cup \{v_{\alpha} | \alpha \in I\}$$

for a some index set I. Note here that I is uncountable and each v_{α} is an *irrational* number. The subset Λ is usually called a *Hamel basis* for \mathbb{R} , in a sense that every real number x can be uniquely expressed as

$$(2) x = r + \sum_{\alpha \in I} a_{\alpha} v_{\alpha},$$

where r and a_{α} are rational numbers which are zero except only a finite number of them.

We define a linear map φ on the vector space $\mathbb R$ into itself by its values on the basis Λ as follows:

(3)
$$\varphi(1) = 1, \quad \varphi(v_{\alpha}) = 0, \ \alpha \in I.$$

Then using the expression as (2), for every $x = r + \sum_{\alpha \in I} a_{\alpha} v_{\alpha}$ and $y = s + \sum_{\alpha \in I} b_{\alpha} v_{\alpha}$ we have

$$\varphi(x+y) = \varphi((r+s) + \sum_{\alpha \in I} (a_{\alpha} + b_{\alpha})v_{\alpha}) = r + s = \varphi(x) + \varphi(y).$$

For each v_{α} in Λ and a sequence (r_j) in \mathbb{Q} converging to v_{α} we see that $\varphi(r_j) = r_j$ converges to v_{α} as j goes to ∞ , but $\varphi(v_{\alpha}) = 0$. This implies the discontinuity of φ at each point $x = v_{\alpha}$. In view of the above Lemma 1 we conclude that φ is eventually not measurable.

REMARK. The function defined above is a variant of an example seen in the book [2].

Now we denote by \mathbb{Q}_{Λ} the set of all real numbers whose expressions with respect to the basis Λ are of the form $\sum_{\alpha \in I} a_{\alpha}v_{\alpha}$. In fact, \mathbb{Q}_{Λ} is a subspace generated by the set $\Lambda \setminus \{1\}$. In other words, a real number x belongs to \mathbb{Q}_{Λ} if and only if there exist indices $\alpha_1, \alpha_2, \ldots, \alpha_k \in I$ such that

$$x = a_{\alpha_1} v_{\alpha_1} + a_{\alpha_2} v_{\alpha_2} + \dots + a_{\alpha_k} v_{\alpha_k},$$

for some rational numbers $a_{\alpha_1}, a_{\alpha_2}, \ldots, a_{\alpha_k}$.

THEOREM 2. The set \mathbb{Q}_{Λ} is a subspace of codimension 1 and non-measurable as a subset of \mathbb{R} .

PROOF. It is easy to see that \mathbb{Q}_{Λ} is a subspace and has a codimension 1, since $\mathbb{R} \approx \mathbb{Q} \oplus \mathbb{Q}_{\Lambda}$.

To prove the second statement let (r_j) be an enumeration of \mathbb{Q} and $r + \mathbb{Q}_{\Lambda}$ be a translation of \mathbb{Q}_{Λ} by a number r. Then we have

(4)
$$\mathbb{R} = \bigcup_{j=1}^{\infty} (r_j + \mathbb{Q}_{\Lambda}).$$

Here, it is not hard to see that $(r_i + \mathbb{Q}_{\Lambda}) \cap (r_j + \mathbb{Q}_{\Lambda}) = \phi$ for $i \neq j$, using the unique expression of real numbers with respect to the Hamel basis and $\varphi(x) = r_j$ for all $x \in r_j + \mathbb{Q}_{\Lambda}$ from its values defined by (3).

Now we recall that the function φ defined above is a non-measurable function. Therefore, we find a real number γ for which the set $A = \{x | \varphi(x) > \gamma\}$ is non-measurable. Hence, we can write

$$A = \bigcup_{r_j > \gamma}^{\infty} (r_j + \mathbb{Q}_{\Lambda}).$$

Therefore, there exists a j_0 with $r_{j_0} > \gamma$ such that $r_{j_0} + \mathbb{Q}_{\Lambda}$ is non-measurable. Otherwise, the set A would be measurable, which leads a contradiction. But, since the Lebesgue measure is translation-invariant, the set \mathbb{Q}_{Λ} is also non-measurable.

In fact, since the subspace \mathbb{Q}_{Λ} is non-measurable, so is its every translation $r + \mathbb{Q}_{\Lambda}$. Therefore, in view of (4) we can say as follows:

COROLLARY 3. \mathbb{R} can be partitioned into a countable family of disjoint non-measurable subset, i.e.,

$$\mathbb{R} = \bigcup_{j=1}^{\infty} (r_j + \mathbb{Q}_{\Lambda}),$$

where (r_j) be an enumeration of \mathbb{Q} .

References

 G. de Barra, Measure Theory and Integration, Ellis Horwod Limited, New York, 1981. [2] G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities*, Cambridge University Press, New York, 1952.

Department of Mathematics and the Program of Integrated Biotechnology Sogang University Seoul 121-742, Korea E-mail: sychung@sogang.ac.kr