References
- I. S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302 https://doi.org/10.1016/j.jmaa.2003.12.001
- I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, preprint
- R. Cawley and R. D. Mauldin, Multifractal decomposition of Moran fractals, Adv. Math. 92 (1992), 196-236 https://doi.org/10.1016/0001-8708(92)90064-R
- G. A. Edgar, Measure, Topology and Fractal Geometry, Springer Verlag, 1990
- K. J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985
- K. J. Falconer, Fractal Geometry, John Wiley and Sons, 1990
- K. J. Falconer, Techniques in fractal geometry, John Wiley and Sons, 1997
- F. Hausdorff, Dimension und ausress, Mass. Math. Ann. 79 (1919), 157-179
- G. Julia, Sur l'iteratioti des fonctions rationnelles, J. Math. Pure Appl. 7 (1918), no. 4, 47-245
- B. B. Mandelbrot, Les Object Fractals: Forme, Hasard et Dimension, Flammarion, 1975
- B. B. Mandelbrot, The fractal geometry of Nature, W. H. Freeman and Company, 1982
- P. M. Mattila, The geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995
- S. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. 63 (2001), no. 2, 655-672 https://doi.org/10.1017/S0024610701001946
- L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), no. 2, 103-122 https://doi.org/10.1112/S0024610702003630
- D. Rand, The singularity spectrum f(a) for cookie-cutters, Ergodic Th. Dynam. Sys. 9 (1989), 527-541
- C. A. Rogers, Dimension prints, Mathematika 35 (1988), 1-27 https://doi.org/10.1112/S0025579300006239
- X. Sun, H. Chen, Z. Wu, and Y. Yuan, Multifractal analysis of Hang Seng index in Hong Kong stock market, Physica A, Statistical mechanics and its applications 291 (2001), no. 1, 553-562 https://doi.org/10.1016/S0378-4371(00)00606-3
- C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philo. Soc. 91 (1982), 54-74