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PERFORMANCE ANALYSIS OF THE
LEAKY BUCKET SCHEME WITH QUEUE
LENGTH DEPENDENT ARRIVAL RATES

Doo I CHOI AND SANG MIN LEE

ABSTRACT. In this paper, we analyze a leaky bucket (LB) scheme
with queue length dependent arrival rates. In other words, if the
queue length exceeds an appropriate threshold value on buffer, the
arrivals need to be controlled. In ATM networks, if the congestion
occurs, the input traffics must be controlled (reduced) for conges-
tion resolution. By the bursty and correlated properties of traffics,
the arrivals are assumed to follow a Markov-modulated Poisson pro-
cess (MMPP). We derive the loss probability and the waiting time
distribution for arbitrary cell. The analysis is done by using the
embedded Markov chain and supplementary variable method. We
also present some numerical examples to show the effects of our
proposed LB scheme.

1. Introduction

In telecommunication networks concluding B-ISDN, it needs to con-
trol the input traffic so as to prevent the network from reaching an
unacceptable congestion level. The leaky bucket (LB) scheme proposed
by Turner [11] has been known as one of the most promising methods
for preventive congestion control and policing functions. For the LB
scheme without a data buffer, Butto et al. [2] analyzed the system with
a on-off type bursty source as G/D/1/N queue. Each burst has a du-
ration Z (random variable) and a bit rate b bit/sec. During the burst,
the cells are assumed to arrive periodically. In order to reduce the cell
loss probability, the data buffer is installed in the LB scheme. All the
following models have a data buffer. Many papers about the LB scheme
have been investigated by the unslotted system (i.e., by continuous-time
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queueing system). With a Poisson arrival process as input process, Sidi
et al. [9] analyzed the LB scheme with both the finite and infinite buffer
capacity. They obtained the distributions of queue length, the waiting
time and the inter-departure time. Kim et al. [6] also analyzed the finite
buffer LB scheme with a Markov Modulated Poisson Process (MMPP)
and derived the cell loss probability and the waiting time distribution.
They showed the effects of the system parameters by varying the ratio
of the arrival rates and the sojourn times of each arrival state for the
MMPP. There are the analysis of LB scheme by the slotted system (i.e.,
by the discrete-time queueing system). Ahmadi et al. [1] and Sohraby
et al. [10] analyzed the LB scheme with the cell transmission at only
slot boundary. In Ahmadi et al. [1], the cell arrivals in a slot are char-
acterized by a batch process, and the arrivals in successive slots are
independent and identically distributed. The solution method is based
on the matrix analytic approach. Sohraby et al. [10] extended the batch
arrival process to a finite state discrete Markovian Arrival Process with
infinite buffer and obtained the queue length distribution. For a Poisson
and a discrete-time MMPP arrival process with finite and infinite buffer,
Wu et al. [12] analyzed the queue length distribution and obtained the
ratio of the variance of the interdeparture times to the variance of the
interarrival times.

On the other side, in order to support Quality of Service (QoS) of
traffics there has been the analysis of the diverse LB schemes. The rep-
resentatives are the LB scheme with a dynamic token generation interval
or priority (3, 4, 5, 7, 8, 13]. In papers [3, 7, 8] the token generation
interval alternates according to the buffer occupancy, maintaining the
same weighted average token generation interval reserved at call set-
up by an admission controller. Lee and Un [7] analyzed the LB scheme
with on-off data source in which the token generation interval during on-
period is somewhat smaller than that of off-period. They analyzed the
performance of the LB scheme by using the fluid-flow method. Recently,
Choi et al. [3, 4, 8] analyzed the LB scheme with the dynamic token
generation intervals, in which the token generation interval is changed
according to buffer occupancy. They assumed the arrival process to be
the MMPP in continuous-time ([8]) and Markov Modulated Bernoulli
Process (MMBP) in discrete-time ([3, 4]). Also, Choi et al [5] ana-
lyzed the LB scheme with priority. They classified traffics into two
types according to their priority. The high priority type is transmitted
by queue-length-threshold (QLT) scheduling policy depending on buffer
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occupancy of low priority cells. The special case of QLT scheduling
policy is just the Head of Line (HOL) priority scheme [13].

In B-ISDN, by the more many cell generation and transmission, the
network may be reached at congestion level. The information on network
maybe lost, and finally the network resources become useless. Thus, the
input traffic must be controlled at appropriate level of buffer occupancy.
We analyze the LB scheme with queue length dependent arrival rates. In
other words, we place a threshold L on the buffer (that is, it is to indicate
congestion state of network). According to whether the queue length
exceeds the threshold L or not, the arrivals are controlled. We assume
the arrivals to be an MMPP by considering the bursty and correlated
input traffic.

2. Model description

There is a buffer to accommodate the arriving cells, and a token pool
to store tokens generated. The cells arrive according to an MMPP, and
they are queued in buffer with finite capacity K if no tokens are available.
The token pool has a finite capacity M, so that the newly generated
tokens are discarded when the token pool is full. Tokens are generated at
every constant time 7. Each token allows a single cell to be transmitted,
and the token following a transmission is removed from the token pool.
We place a threshold L on the buffer and control the arrival according
to buffer state (that is, queue length). The arrival rate is changed at
only token generation instant. In other words, if the queue length at
token generation instant exceeds the threshold L, the arrivals follow a
MMPP with representation (@, Az), where Ay = diag(A\2). Otherwise,
the arrivals follow another MMPP with representation (Q, A1), where
Ay = diag(A}), i = 1,2,...,N. The square matrix Q with size N is
the infinitesimal generator of the underlying Markov process J(t) with
state space {1,2,..., N}. The steady-state probability vector II of the
underlying Markov process J(¢) is given by solving the equations:

IQ =0, e =1,

where e and 0 are vectors of size NV consist of all ones and zeros, respec-
tively.
Let M;(t)(Mz(t)) be the number of arrivals by Aj(A2) during the
interval (0,¢]. Now we define the conditional probabilities
pij(nt) = Pr{M.(t) =n,J(t) =j | My(0) =0,J(0) =i},
r=1,2, n>0.
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By the Chapman-Kolmogorov’s forward equations, we have the different-
ial-difference equations for the matrices P,(n,t) = (p;j(n, t))i<ij<n :

P.(n,t) = Po(n,£)(Q — A,)
+ Pr(n—1,t)A,, r=1,2, n>0,

where P,(—1,t) is the matrix 0. Then, it is easily shown that the matrix
P,(n,t) has the probability generating function

P(z,t) £ Y Pi(n,t)2"
n=0

= el@FTE-DARE <1, r =12

3. Analysis

3.1. System state distribution at token generation instants

We consider the system state at token generation instants 0, T, 27, . . ..
Let B(n) (T'(n)) be the number of cells (tokens) in buffer (token pool,
respectively) just after the nth token generation instant. Since the ar-
riving cells wait in buffer only if there is no token, we so express the
state of buffer and token pool as follows

N(n) 2 B(n) + M — T(n).

That is, if there are i tokens in token pool (B(n) = 0), then N(n) =
M —i. Also, if there are i cells in buffer (T'(n) = 0), then N(n) =
M + 4. Finally, the process {(N(n), J(n)),n > 0} forms a 2-dimensional
Markov chain with finite state space {(0,0),...,(0, N),(1,0),...,(M +
K —1,N)}. In this paper, we consider the stationary probability distri-
bution of the system state. Define the matrix A} as

AL =Pk, T), k=01,..., r=1,2
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Then, the transition probability matrix @ of the Markov chain {(N(n),
J(n)),n > 0} is given by

-1
Aé + A% A% e A}VI+L A}\/[-}—L—{—l A}VI+L+2 e A}VI+K—1 _fM-kK
A(l) A} s A:IL\/1+L—1 A}\/I+L A}\4+L+1 A}VI+K-2 ‘_4_{\/1+K—1
0 Aé A}\/I+L—2 A}VI+L—1 A11\/1+L A}\/H—K—s AM+K——2
: : . : : . : -
o=| ° 0 ... Al A} Al R Ai(z_LJrl
0 o ... A? A2 A3 A Ak
0 0 ... 0 A2 A3 o AL, o Ak 1
0 0 0 o A2 E%
0 0 0 e Ag A

where 4, = 320, AT

It is shown easily the Q is a stochastic matrix. The steady-state probabil-
ity vector z = (xg,1,...,Tpm+k—1) of the Markov chain {(N(n), J(n)),
n > 0} finally is given by solving the equations

zQ = z, re = 1.
3.2. System state distribution at an arbitrary instants

In this subsection we derive the system state distribution at an ar-
bitrary time. Let T (T') be the elapsed (remaining, respectively) token
generation time. Define the limiting probabilities and the vectors

i) = Jim PrN() =n, () = ),
Yn = (yn(]-), 'yn(Q)a Y yn(N))

We furthermore define the joint probability distribution of the system
state and the remaining token generation time at arbitrary time 7 as

anj(t)dt = Pr{N(r) =n,J(1) = j,t < T < t +dt},

and the Laplace transform of oy, ;(t)

o0
ol () = / etan (t)dt, j=1,2,...,N.
0
Let an(s) = (o, 1(8),05,2(8),-- -, 0}, y(5)). In order to derive ay, ;(s),
we define the conditional probability 8,.(n, j1, j2, t)dt as
Br(n, j1, j2, t)dt = Pr{ n arrivals by A, during T, J(7) = jo,
t<T <t+dt|JF) =5}, n>0,
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where 7 is the starting time of the token generation interval which in-
cludes the time 7. We also define the Laplace transform (3} (n, j1, j2, s))
of ﬂ’r‘(na jl’j%t) and the matrix /8:(”) 8) with /8:(”7].1’.7.27 S) as (jl»j?)'
element;:

0
ﬂ:(najl,j%'s) = / e_Stﬂr(n7jlaj27t)dt,
: 0

Br(n, s) = (Br(n, J1, 52, $))1<ji josn, 1720, r=1,2.
Then, the vectors ;(s) satisfy the following equations:

ForO<n< M+ L

an(s) = kaﬂf(n —k,s).
k=0

For M+ L<n<M+K

M+L-1 n
an(s)= > zPiln—ks)+ Y. zBi(n—k,s).
k=0 k=M+L

It is easy to show that G (n, s) is given by
1 n
Brn,s) = = Y AR _(s) — e TRL(s)|
k=0

where R (s) = (s — Ay + Q)" HA (A, — s — Q)71}™, 7 = 1,2. Finally,
substituting 8 (n,s)(r = 1,2) into above equations a;,(s), we obtain
Yn = 0 (0): '

For0<n<M+1L,

n n—k »
vn= w3 AH@— A (A — QT

k=0 =0

—(Q = A)H{AL (AL — QTR
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For M+L<n<M+K
M+L-1  n—k

Un = % x’“[z AN(Q — A1) HAL (A — Q) LR
k=0 =0

—(Q — A)HAL(AL — Q)R

n n—k
* % Z xk[z AZ(Q — Ay) HAg(Ay — Q) 1R

k=M+L  1=0

~(Q=82)H{As (A~ Q7Y

and
M+K-1
Ymygx =1 — Z Yn.
n=0

Thus, by using the stationary queue length distribution y,, we obtain
the following loss probability (Pss) for arbitrary arriving cell:

ymM+k (AT +AY)e  ymik(A] + Aje

131 = = )
TS wAr+As)e AT Ag)e
where A} = St greAy, AS = Saih i zreds.

REMARK. If there is no change of arrival (i.e., A7 = A2 = A, also
L = K), then the system state distribution at arbitrary time is given by

1 n n—k ~ B o
vo = 2wl Y 4@ — )AL - Q)T
k=0 =0
—(Q@-MN"HAM - Q)
where Al1 = A? = A;.
This is just the corresponding result of the ordinary LB scheme without
threshold [4].

4. Waiting time distribution

We derive the distribution of waiting time (W) for a cell which is not
blocked. Let’s a tagged cell arrive at time ¢. Then, the tagged cell may
find the system in one of the following states:

1) There are n (1 < n < M, ie, 0 < N(t) < M — 1) tokens in the

token pool. In this case, the tagged cell is transmitted immediately
and the waiting time is zero.
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2) There is no token and no cell queued in the buffer (i.e., N(t) = M).
In this case, the tagged cell will be transmitted at the next token
generation instant, the waiting time, thus, is T.

3) Therearen (1 <n<K-1,ie, M+1< Nt <M+K-1)
cells queued in the buffer. In this case, the tagged cell may have
to wait until these cells are transmitted. Thus, the waiting time is
T+ nT.

By considering above cases, we can derive the Laplace transform of the
waiting time for the cell which is not blocked:

W*(s) = E[e™*"]

1 M-1 M+K-1
=——— 1D watails)+ Y (7)) Man(s)
1~ ROSS n=0 n=M+1
M+-K
X (A +A3)e/( D wa(A] + Ad)e).
n=0

Then, the mean waiting time of a cell is given by differentiating this
Laplace transform:

BIW) = (-1) SW°(s)

s=0

5. Numerical examples

In this section, we give some numerical examples to show the effects
of our proposed LB scheme . The followings are assumed for numerical
examples. As an arrival of cells, we use a two-state MMPP with

—012 012 A1 O

= ,A = ,A = A 2.
@ [ 021 —021] ! [0 Az] 2 1/

In all numerical examples, we take buffer sizes K = 10, o13(= 021) = 0.1

and Ay/A; = 6. We also set the token generation interval(T') equal to 1.

The total effective arrival rate A* is given by

A =TII(A] + A})e.

Figs. 1 and 2 illustrate the loss probability and the mean waiting
time, respectively, as a function of total effective arrival rate when M =
5. From the figures, for various values of the threshold value L, we can
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observe that the loss probability and the mean waiting time increase as
the threshold value L becomes large.
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FIGURE 1. Loss probability against total effective arrival rate
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FIGURE 2. Mean waiting time against total effective ar-
rival rate

For various values of the token pool size M when L = 5, Figs. 3 and
4 illustrate the loss probability and the mean waiting time, respectively,
as a function of total effective arrival rate. From the figures, we can
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observe that the loss probability and the mean waiting time decrease as
the token pool size M becomes large.
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FIGURE 3. Loss probability against total effective arrival rate
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FIGURE 4. Mean waiting time against total effective ar-
rival rate

In Figs. 5 and 6, we compare the loss probability and the mean
waiting time of MMPP arrivals with those of poisson arrivals. From the
figures, we can observe that the loss probability and the mean waiting
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time with MMPP arrivals are larger than those of poisson arrivals. These

comes from the burstiness of MMPP arrivals. It indicates the importance
of modelling for arrival process of input traffic.
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FIGURE 5. Loss probability against total effective arrival rate
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FIGURE 6. Mean waiting time against total effective ar-
rival rate

When L = K(= 10), our proposed LB scheme is just the ordinary
LB scheme without threshold. In Figs. 7 and 8, we compare the our
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proposed LB scheme with the ordinary LB scheme without threshold.
We can certify that the our proposed LB scheme has the fairly enhanced
performance than the ordinary LB scheme without threshold.
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