# DERIVATIONS ON SUBRINGS OF MATRIX RINGS

# JANG-HO CHUN AND JUNE-WON PARK

ABSTRACT. For a lower niltriangular matrix ring  $A = NT_n(K)$   $(n \geq 3)$ , we show that every derivation of A is a sum of certain diagonal, trivial extension and strongly nilpotent derivation. Moreover, a strongly nilpotent derivation is a sum of an inner derivation and an uaz-derivation.

## 1. Introduction

Let  $NT_n(K)$   $(n \geq 3)$  be the ring of all (lower niltriangular)  $n \times n$  matrices over an associative ring with identity K which are all zeros on and above the main diagonal.

It is well-known(see [4], p.100) that if F is a field, then any F-derivation of  $M_n(F)$  is inner. Moreover, Amitsur [1] showed that any derivation of  $M_n(K)$  is a sum of an inner derivation and a trivial extension and Nowicki [8] characterized derivations of special subrings of  $M_n(K)$ .

Dubish and Perlis [3] classified automorphisms on  $NT_n(F)$  over a field F. Every automorphism on  $NT_n(F)$  is equal to a product of certain diagonal automorphism, inner automorphism and nil automorphism. Moreover, Levchuk ([6], [7]) characterized automorphisms of  $NT_n(K)$  and Kuzucuoglu and Levchuk [5] characterized automorphisms on  $R_n(K, J) = NT_n(K) + M_n(J)$ .

In this paper, we will characterize derivations of  $NT_n(K)$ . In section 2, we characterize ideals and characteristic ideals of  $NT_n(K)$ . In section 3, we show that for a derivation  $\delta$  on  $NT_n(K)$ ,  $\delta = i_d + \bar{\sigma} + s_t$  where  $i_d$  is a diagonal inner,  $\bar{\sigma}$  is a trivial extension of K and  $s_t$  is a strongly nilpotent derivation. In section 4, we have that for a strongly

Received November 21, 2005.

<sup>2000</sup> Mathematics Subject Classification: 16S32, 16D25.

Key words and phrases: derivations, diagonal derivations, strongly nilpotent derivations, inner derivations.

nilpotent derivation  $s_t$ ,  $s_t = s_i + s_{uaz}$  where  $s_i$  is an inner derivation and  $s_{uaz}$  is an uaz-derivation. Moreover, we characterize the difference between uaz-derivations and az-derivations.

For a ring R, not necessarily contains 1, a derivation  $\delta$  is an additive map on R which satisfies

$$\delta(ab) = \delta(a)b + a\delta(b)$$
  $(a, b \in R)$ .

We say that  $\delta$  is an inner derivation if there exist  $r \in R$  such that  $\delta(x) = rx - xr$  for all  $x \in R$ .

For the convenience we have the followings:

- (1)  $NT_n(K) \equiv A_n \equiv A$ .
- (2)  $e_{ij}$ : matrix units of  $M_n(K)$ .
- (3)  $A^k$ : k-th product of A.
- (4) Any derivation  $\sigma$  of K can be extended to A by putting

$$\bar{\sigma}(\sum_{i>j}r_{ij}e_{ij}) = \sum_{i>j}\sigma(r_{ij})e_{ij} \qquad (r_{ij}\in K).$$

It is easy to show that  $\bar{\sigma}$  is also a derivation of A. We call  $\bar{\sigma}$  a trivial extension of  $\sigma$ .

- (5) Let  $B_n$  be the set of all matrices in  $M_n(K)$  with zeros above the diagonal. Then each diagonal matrix  $d = \sum d_i e_{ii} (d_i \in K)$  determines a derivation  $i_d(x) = [d, x]$  of  $B_n$  and the derivation  $i_d$  induces on A. We call  $i_d$  a diagonal derivation.
- (6) Since we can regard A as a K-module, we define a K-derivation on A by  $\delta(rx) = r\delta(x) (r \in K, x \in A)$ .
  - (7) For all  $x \in A$ , we denote  $\{x\}_{ij} = \pi_{ij}(x)$ .

# 2. Ideals of A

The ideals of  $NT_n(F)$  are characterized in Dubisch and Perlis [3], which are referred to "staircase open polygon". Also, the ideals of A can be regarded similarly. But we characterize ideals of A another way. For any subset H of A, trivially  $\sum \pi_{ij}(H)e_{ij} \supseteq H$ . If  $H = \sum \pi_{ij}(H)e_{ij}$ , we call H a direct subset of A.

PROPOSITION 2.1. Let H be a subset of A. If H is an ideal of A, then the followings hold;

(1)  $\pi_{ij}(H)$  is a subgroup of K.

- (2) For all s > i,  $\pi_{sj}(H) \supseteq K\pi_{ij}(H)$ .
- (3) For all t < j,  $\pi_{it}(H) \supseteq \pi_{ij}(H)K$ .

Conversely, if H is a direct subset of A and satisfies above (1), (2) and (3), then H is an ideal of A.

*Proof.* The proof of the first statement is obvious. Conversely, by (2)

$$\pi_{ij}(NT_n(K)H) = \sum_{\lambda=1}^n \pi_{i\lambda}(NT_n(K))\pi_{\lambda j}(H)$$

$$= \sum_{\lambda=j+1}^{i-1} \pi_{i\lambda}(NT_n(K))\pi_{\lambda j}(H)$$

$$= \sum_{\lambda=j+1}^{i-1} K\pi_{\lambda j}(H) = K\pi_{i-1,j}(H) \subseteq \pi_{ij}(H).$$

Thus, by  $\sum \pi_{ij}(H)e_{ij} = H$ ,  $NT_n(K)H \subseteq H$ , that is,  $AH \subseteq H$ . Similarly, by (3) and  $\sum \pi_{ij}(H)e_{ij} = H$ ,  $HA \subseteq H$ . Therefore, H is an ideal of A.

Next example shows that an ideal of A is not necessarily direct and for noetherian ring K, A is not noetherian in general.

EXAMPLE 2.2. For the rational number field **Q** and the ring of integers **Z**, let  $K = M_2(\mathbf{Q})$  and  $A = NT_3(K)$ . Denote  $f_{ij}(i, j = 1, 2)$  by matrix units of  $M_2(\mathbf{Q})$ . Set

$$H_k = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ \frac{n}{2^k} f_{21} & 0 & 0 \\ T & \frac{n}{2^k} f_{21} & 0 \end{pmatrix} \middle| n \in \mathbf{Z} \right\}, \qquad k = 1, 2, \dots$$

where  $T = \mathbf{Q}f_{11} + \mathbf{Q}f_{21} + \mathbf{Q}f_{22}$ . Then we have the following properties;

- (1)  $H_k$  are ideals but not direct.
- (2) T is not an ideal of K.
- (3) For a trivial extension  $\delta$  of an inner derivation of K,  $H_k$  is not invariant in general.
- (4) K is noetherian. But since  $H_1 \subsetneq H_2 \subsetneq H_3 \subsetneq \cdots, A$  is not noetherian.

DEFINITION 2.3. Let C be a subring of a ring R. C is called characteristic if every derivation  $\delta$  on R induces a derivation on C.

Obviously for k(1 < k < n), the k-th powers  $A^k$  are characteristic ideals of A.

For  $x \in A$ , it is important to find characteristic ideals of A which contains  $\delta(x)$ . We introduce certain characteristic ideals of A which contains matrix unit  $e_{ij}(i > j)$ .

Let  $C_l$  be the totality of matrices in A whose columns beyond the l-th are zero. Then  $C_l$  is an ideal of A. Likewise, an ideal is given by the set  $R_k$  of all matrices in A whose first k-1 rows are zero.

PROPOSITION 2.4 [3].  $C_l$  is the left annihilator of  $A^l$  and  $R_k$  is the right annihilator of  $A^k$ .

THEOREM 2.5.  $C_l$  and  $R_k$  are characteristic ideals. Moreover, for each derivation  $\delta$  on A and each matrix unit  $e_{kl} \in A$ ,  $\delta(e_{kl}) \in C_l \cap R_k$ .

*Proof.* For arbitrary derivation  $\delta$  of A, let  $c \in C_l$  and  $x \in A^l$ . Then by Proposition 2.4

$$0 = \delta(cx) = \delta(c)x + c\delta(x).$$

Since  $A^l$  is a characteristic ideal  $\delta(x) \in A^l$  and  $c\delta(x) = 0$ . So,  $\delta(c)x = 0$ . This means  $\delta(c)A^l = 0$ . Thus  $\delta(c) \in C_l$ . Therefore  $C_l$  is a characteristic ideal.

Similarly,  $R_k$  is a characteristic ideal.

Moreover, 
$$e_{kl} \in C_l \cap R_k$$
. So  $\delta(e_{kl}) \in C_l \cap R_k$ .

From the Theorem 2.5,  $\delta(e_{kl}) \in C_l \cap R_k$ . So we have the following;

(\*) 
$$\delta(e_{k,k-1}) = \sum_{i \ge k} \sum_{j \le k-1} \beta_{ij}^{(k)} e_{ij}, \qquad \beta_{ij}^{(k)} \in K.$$

Now we characterize the characteristic ideals of A

THEOREM 2.6. Let H be a characteristic ideal of A. Then the followings hold;

- (1)  $\pi_{ij}(H)$  is an ideal of K.
- (2) H is direct.
- (3)  $\pi_{ij}(H)$  is a characteristic ideal of K.

*Proof.* (1) For  $r \in K$ , let  $i_d$  be a diagonal derivation induced by  $d = re_{ii}$ , that is,  $i_d(x) = dx - xd$  for all  $x \in A$ . Then

$$r\pi_{ij}(H) = \pi_{ij}(rH) = \pi_{ij}([d, H]) = \pi_{ij}(i_d(H)) \subseteq \pi_{ij}(H).$$

So,  $\pi_{ij}(H)$  is a left ideal of K.

To show that  $\pi_{ij}(H)$  is a right ideal, take  $d = -re_{ij}$ . Then

$$\pi_{ij}(H)r = \pi_{ij}(Hr) = \pi_{ij}([d, H]) = \pi_{ij}(i_d(H)) \subseteq \pi_{ij}(H).$$

So,  $\pi_{ij}(H)$  is a right ideal of K. Therefore,  $\pi_{ij}(H)$  is an ideal of K. (2) Since H is a characteristic ideal,

$$[-e_{jj}, [e_{ii}, H]] = \pi_{ij}(H)e_{ij} \subseteq H.$$

So,  $\sum \pi_{ij}(H)e_{ij} \subseteq H$ , that is,  $\sum \pi_{ij}(H)e_{ij} = H$ .

(3) Let  $\sigma$  be a derivation of K. Then trivial extension  $\bar{\sigma}$  of  $\sigma$  is a derivation of A. So,  $\bar{\sigma}(H) \subseteq H$ . Thus,  $\sigma(\pi_{ij}(H)) \subseteq \pi_{ij}(H)$ . Therefore,  $\pi_{ij}(H)$  is a characteristic ideal.

COROLLARY 2.7. Let H be a characteristic ideal of A. If  $\pi_{ij}(H) = K$  or 0, then H is generated by  $C_{l_1} \cap R_{k_1}, C_{l_2} \cap R_{k_2}, \ldots, C_{l_t} \cap R_{k_t}$ .

## 3. Characterizations of derivations

Since A is a free K-module with basis  $\{e_{ij}\}(i>j)$ , derivations of A highly depends on the image of  $e_{ij}$ . Every K-module derivation of A is determined by the image of  $e_{ij}$ , but in general every derivation of A is not determined by the image of  $e_{ij}$ . However, we get a useful lemma which says that for any derivation  $\delta$  of  $\{\delta(e_{ij})\}_{ij} = 0$ , the coordinate function of  $\delta$  is also a derivation of K.

LEMMA 3.1. Suppose  $\delta$  is a derivation of A and  $\{\delta(e_{ij})\}_{ij} = 0$  for all i > j. Define the coordinate function  $\delta_{ij} : K \longrightarrow K$  such that  $\delta_{ij}(r) = \{\delta(re_{ij})\}_{ij} (r \in K)$ . Then  $\delta_{ij} = \delta_{21}$  and  $\delta_{ij}$  is a derivation of K.

*Proof.* For  $r \in K$ , we get

$$\delta_{31}(r) = \{\delta(re_{31})\}_{31} = \{\delta(re_{32}e_{21})\}_{31}$$

$$= \{\delta(re_{32})e_{21} + re_{32}\delta(e_{21})\}_{31}$$

$$= \{\delta(re_{32})e_{21}\}_{31}$$

$$= \{\delta_{32}(r)e_{31}\}_{31} = \delta_{32}(r).$$

On the other hand,

$$\delta_{31}(r) = \{\delta(re_{31})\}_{31} = \{\delta(re_{32}e_{21})\}_{31} = \{\delta(e_{32}re_{21})\}_{31}$$
$$= \{\delta(e_{32})re_{21} + e_{32}\delta(re_{21})\}_{31} = \{\delta_{21}(r)e_{31}\}_{31}$$
$$= \delta_{21}(r).$$

Hence,  $\delta_{32} = \delta_{21}$ . Similarly, we can show that for  $4 \leq k \leq n$ ,  $\delta_{k,k-1} = \delta_{21}$ .

If  $i - j \geq 2$ ,

$$\delta_{ij}(r) = \{\delta(re_{ij})\}_{ij} = \{\delta(re_{i,i-1} \cdots e_{j+1,j})\}_{ij}$$
$$= \{\delta_{i,i-1}(r)e_{ij}\}_{ij} = \delta_{i,i-1}(r).$$

Therefore, for all i > j,  $\delta_{ij} = \delta_{21}(i > j)$ .

Now we will show that  $\delta_{31}$  is a derivation of K. For arbitrary  $r, r' \in K$ ,

$$\delta_{31}(rr') = \{\delta(rr'e_{31})\}_{31} = \{\delta(re_{32}r'e_{21})\}_{31}$$

$$= \{\delta(re_{32})r'e_{21} + re_{32}\delta(r'e_{21})\}_{31}$$

$$= \{\delta(re_{32})\}_{32}r' + r\{\delta(r'e_{21})\}_{21}$$

$$= \delta_{32}(r)r' + r\delta_{21}(r') = \delta_{31}(r)r' + r\delta_{31}(r).$$

So,  $\delta_{31}$  is a derivation of K. This means  $\delta_{ij}$  is a derivation of K.

COROLLARY 3.2. Suppose that  $\delta, \delta'$  are derivations of A satisfying  $\{\delta(e_{ij})\}_{ij} = \{\delta'(e_{ij})\}_{ij}$  for all i > j. Then  $\delta_{ij} - \delta'_{ij} = \delta_{21} - \delta'_{21}$  and  $\delta_{ij} - \delta'_{ij}$  is a derivation of K.

COROLLARY 3.3. Let  $\delta_{ij}: K \longrightarrow K(i > j)$  be derivations. Define  $\delta: A \longrightarrow A$  by  $\delta(\sum_{i>j} r_{ij}e_{ij}) = \sum_{i>j} \delta_{ij}(r_{ij})e_{ij}$ . If  $\delta$  is a derivation of A, then for all i > j,  $\delta_{ij} = \delta_{21}$ .

*Proof.* Since  $\delta(e_{ij}) = 0$ ,  $\{\delta(e_{ij})\}_{ij} = 0$ . And for all  $r \in K$ ,  $\delta_{ij}(r) = \{\delta(re_{ij})\}_{ij}$ . So, by Lemma 3.1,  $\delta_{ij} = \delta_{21}$ .

Lemma 3.4. If  $\delta$  is a diagonal derivation of A. Then

- (1)  $\delta(e_{k,k-1}) = \alpha_k e_{k,k-1}$ , where  $\alpha_k \in K$  and  $2 \le k \le n$ .
- (2)  $\delta(e_{kl}) = \alpha_{kl}e_{kl}$ , where  $\alpha_{kl} = \alpha_k + \alpha_{k-1} + \cdots + \alpha_{l+1}$ .

Conversely, if  $\delta$  is a derivation of A satisfying (1) and (2), then  $(\delta - i_d)(e_{kl}) = 0$ , where  $i_d$  is a diagonal derivation induced by  $d = \alpha_2 e_{22} + \cdots + (\alpha_2 + \cdots + \alpha_n)e_{nn}$ .

*Proof.* The proof of the first statement is obvious. Conversely, for all k > l,

$$i_d(e_{kl}) = de_{kl} - e_{kl}d$$

$$= (\alpha_2 + \dots + \alpha_k)e_{kl} - (\alpha_2 + \dots + \alpha_l)e_{kl}$$

$$= (\alpha_k + \dots + \alpha_{l+1})e_{kl}.$$

So, 
$$(\delta - i_d)(e_{kl}) = 0$$
.

Lemma 3.5. Let  $\delta$  be a derivation on A. Then there exists a diagonal derivation  $i_d$  such that  $\{(\delta - i_d)(e_{ij})\}_{ij} = 0$ .

*Proof.* The quantities  $\delta(e_{k,k-1}), \ldots, \delta(e_{l+1,l})$  can be denoted as equations (\*) in section 2 with corner coefficients  $\beta_{k,k-1}^{(k)} \equiv \alpha_k, \dots, \beta_{l+1,l}^{(l+1)} \equiv$  $\alpha_{l+1}$ . By multiplying the equations, we find that

$$\delta(e_{kl}) = \sum_{i>k} \sum_{j< l} \beta_{ij}^{(kl)} e_{ij} \qquad (\beta_{ij}^{(kl)} \in K)$$

with corner coefficients  $\beta_{kl}^{(kl)} \equiv \alpha_{kl} = \alpha_k + \alpha_{k-1} + \cdots + \alpha_{l+1}$ . The quantities  $\alpha_l, \alpha_{kl}$  thus fulfill the conditions (1) and (2) of Lemma 3.4. So, the correspondence  $e_{kl} \mapsto \alpha_{kl} e_{kl}$  generates a diagonal derivation  $i_d$  such that  $\{\delta(e_{ij})\}_{ij} = \{i_d(e_{ij})\}_{ij}$ , that is,  $\{(\delta - i_d)(e_{ij})\}_{ij} = 0.\square$ 

Definition 3.6. Let  $s_t$  be a derivation on A.  $s_t$  is called a strongly nilpotent derivation if for all  $x \in A^k$ ,  $s_t(x) \in A^{k+1}$ .

Obviously every strongly nilpotent derivation of A is nilpotent and every inner derivation of A is strongly nilpotent.

Proposition 3.7. Suppose that  $\delta$  is a derivation on A such that  $\{\delta(e_{ij})\}_{ij}=0$  for all i>j. Then there exists a trivial extension  $\bar{\sigma}$  of A such that  $\delta - \bar{\sigma}$  is strongly nilpotent.

*Proof.* By Lemma 3.1, it is obvious. 
$$\Box$$

Theorem 3.8. Let  $\delta$  be a derivation of A. Then  $\delta = i_d + \bar{\sigma} + s_t$ where  $i_d$  is a diagonal inner,  $\bar{\sigma}$  is a trivial extension of K and  $s_t$  is a strongly nilpotent derivation.

*Proof.* By Lemma 3.5, there exists a diagonal derivation  $i_d$  such that  $\{(\delta - i_d)(e_{ij})\}_{ij} = 0$ . And by Proposition 3.7, there exists a trivial extension  $\bar{\sigma}$  of A such that  $(\delta - i_d) - \bar{\sigma}$  is strongly nilpotent.

#### 4. uaz- derivations of A

Matrix units  $e_{21}, e_{31}, \ldots, e_{n1}$  are left annihilators of A and matrix units  $e_{n1}, e_{n2}, \ldots, e_{n,n-1}$  are right annihilators of A. There exist derivations that the images of these matrix units are zero. These derivations are important role to characterize strongly nilpotent derivations.

DEFINITION 4.1. A strongly nilpotent derivation  $\delta$  of A is called a uaz-derivation if  $\delta(u) = 0$  for every matrix unit u which is an absolute left or right divisor of zero.

THEOREM 4.2. Let  $\delta$  be a strongly nilpotent derivation of A. Then  $\delta$  is a uaz-derivation of A if and only if  $\delta(e_{k,k-1}) = \gamma_k e_{n1}(k=2,\dots,n)$  where  $\gamma_2 = \gamma_n = 0$  and the remaining  $\gamma_k$  are arbitrary scalars.

*Proof.* ( $\iff$ ) By the hypothesis,  $\delta(e_{21}) = \delta(e_{n,n-1}) = 0$ . Since  $\delta$  is a derivation of A, we can get

$$\begin{split} \delta(e_{k,k-2}) &= \delta(e_{k,k-1}e_{k-1,k-2}) \\ &= \delta(e_{k,k-1})e_{k-1,k-2} + e_{k,k-1}\delta(e_{k-1,k-2}) \\ &= \gamma_k e_{n_1}e_{k-1,k-2} + e_{k,k-1}\gamma_{k-1}e_{n_1} = 0. \end{split}$$

So,  $\delta(e_{kj}) = 0$  for j < k - 1. Thus,  $\delta$  is a *uaz*-derivation.

 $(\Longrightarrow)$  i) If k=2 or n, then  $\gamma_2=\gamma_n=0$  by hypothesis.

ii) Assume 2 < k < n.

Since  $\delta$  is a strongly nilpotent derivation, let  $\delta(e_{k,k-1}) = t_k$  with  $t_k \in A^2$  and  $t_k \in C_{k-1} \cap R_k$  by the Theorem 2.5.

Now  $0 = \delta(e_{k1}) = \delta(e_{k,k-1}e_{k-1,1}) = \delta(e_{k,k-1})e_{k-1,1} = t_k e_{k-1,1}$ . So, (k-1)-th column of the matrix  $t_k = 0$ .

For 1 < j < k-1,  $0 = \delta(e_{k,k-1}e_{j1}) = \delta(e_{k,k-1})e_{j1} = t_k e_{j1}$ . So, the j-th column of  $t_k = 0$  for all 1 < j < k-1.

Thus, the j-th column of  $t_k = 0$  for all  $1 < j \le k - 1$ .

On the other hand,  $0 = \delta(e_{nk}e_{k,k-1}) = e_{nk}\delta(e_{k,k-1}) = e_{nk}t_k$ . So, the k-th row of  $t_k = 0$ . Also, for n > j > k,  $0 = \delta(e_{nj}e_{k,k-1}) = e_{nj}\delta(e_{k,k-1}) = e_{nj}t_k$ . So, j-th row of  $t_k = 0$ , for all k < j < n.

Thus, j-th row of  $t_k = 0$ , for all  $k \ge j < n$ .

Therefore,  $t_k = \gamma_k e_{n1}$ .

THEOREM 4.3. Let  $s_t$  be a strongly nilpotent derivation of A. Then  $s_t = s_i + s_{uaz}$  where  $s_i$  is an inner derivation and  $s_{uaz}$  is a uaz-derivation.

*Proof.* It is enough to show that for a strongly nilpotent derivation  $s_t$  there exist an inner derivation  $s_i$  such that  $s_t - s_i$  is a uaz-derivation. By (\*) and the hypothesis, we can set

$$s_t(e_{k1}) = \sum_{p>k} \alpha_{pk} e_{p1} \qquad (k=2,\ldots,n-1).$$

The scalars  $\alpha_{pk}$  are thus defined for  $n \geq p > k > 1$  and  $s_t(e_{k1}) =$  $(\sum_{p>q>1} \alpha_{pq} e_{pq}) e_{k1} = [a, e_{k1}], \text{ where } a = \sum_{p>q>1} \alpha_{pq} e_{pq}.$ So, the inner derivation  $s_a(x) = [a, x]$  has the property  $s_1 \equiv s_t - s_a$ 

maps  $e_{k1}$  to zero.

Since  $s_1$  is strongly nilpotent,  $s_1(e_{nk}) = \sum_{q < k} \beta_{kq} e_{nq}$ . And since for all  $p(1 , <math>e_{nk}e_{p1} = 0$ . So, we have  $0 = s_1(e_{nk}e_{p1}) = s_1(e_{nk})e_{p1} + s_1(e_{n$  $e_{nk}s_1(e_{p1}) = s_1(e_{nk})e_{p1} = (\sum_{q < k} \beta_{kq}e_{nq})e_{p1} = \beta_{kp}e_{n1}.$ 

It follows that the coefficients  $\beta_{kp}$  are zero except possibly for  $\beta_{k1}(k=$  $2, \ldots, n-1$ ). So,  $s_1(e_{nk}) = \beta_{k1}e_{n1} = e_{nk}(\sum_{j=2}^{n-1}\beta_{j1}e_{j1})$ .

Let  $-b = \sum_{j=2}^{n-1} \beta_{j1} e_{j1}$ . Then the inner derivation  $s_b(x) = [b, x]$  has the property  $(s_1 - s_b)e_{nl} = 0(l = 1, ..., n - 1)$  and  $(s_1 - s_b)e_{k1} =$  $-s_b(e_{k1}) = 0 (k = 2, ..., n).$ 

Therefore,  $s_1 - s_b = s_t - (s_a + s_b)$  is a uaz-derivation and  $s_a + s_b$  is an inner derivation.

COROLLARY 4.4. Let  $\delta$  be a derivation of A. Then  $\delta = i_d + \bar{\sigma} + s_i + \bar{\sigma} + \bar$  $s_{uaz}$  where  $i_d$  is a diagonal inner,  $\bar{\sigma}$  is a trivial extension of K,  $s_i$  is an inner derivation and  $s_{uaz}$  is a uaz-derivation.

The left(right) annihilators of A are the quantities  $e_{21}, e_{31}, \ldots, e_{n1}$  $(e_{n1}, e_{n2}, \ldots, e_{n,n-1})$  and their linear combinations.

Definition 4.5. A strongly nilpotent derivation  $\delta$  of A is called an az-derivation (annihilator zero derivation) if  $\delta(a) = 0$  for every absolute left or right divisor of zero a.

It is obvious that an az-derivation is a uaz-derivation. Moreover, for a K-derivation, an az-derivation is equal to a uaz-derivation.

In general, every derivation cannot be expressed as a sum of diagonal, trivial extension, inner and az-derivations. The derivation given in the next example is a uaz-derivation, but not an az-derivation.

Example 4.6. Let

$$A = \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{Z}[X] & 0 & 0 \\ \mathbf{Z}[X] & \mathbf{Z}[X] & 0 \end{pmatrix}$$

where  $\mathbf{Z}[X]$  is a polynomial ring over an integer  $\mathbf{Z}$ . Define  $\delta: A \longrightarrow A$  by

$$\delta(\sum f_{ij}e_{ij})(i>j) = \frac{d}{dx}f_{21}e_{31}.$$

Then  $\delta$  is strongly nilpotent and inner part of  $\delta$  is 0, that is,  $\delta$  is a uaz-derivation. But  $\delta \neq az$ -derivation.

## References

- [1] S. A. Amitsur, Extension of derivations to central simple algebras, Comm. Algebra 10 (1982), no. 8, 797–803.
- [2] J. H. Chun and J. W. Park, *Prime ideals of subrings of matrix rings*, Commun. Korean Math. Soc. **19** (2004), no. 2, 211–217.
- [3] R. Dubisch and S. Perlis, On total nilpotent algebra, Amer. J. Math. 73 (1951), 439–452
- [4] I. N. Herstein, Noncommutative rings, The Mathematical Association of America, 1968.
- [5] F. Kuzucuoglu and V. M. Levchuk, The automorphism group of certain radical matrix rings, J. Algebra 243 (2001), no. 2, 473-485.
- [6] V. M. Levchuk, Automorphisms of certain nilpotent matrix groups and rings, Dokl. Akad. Nauk SSSR 222 (1975), no. 6, 1279–1282.
- [7] \_\_\_\_\_, Connections between the unitriangular group and certain rings. II. Groups of automorphisms, Sibirsk. Mat. Zh. 24 (1983), no. 4, 64-80.
- [8] A. Nowicki, Derivations of special subrings of matrix rings and regular graph, Tsukuba J. Math. 7 (1983), no. 2, 281–297.

Jang-Ho Chun, Department of mathematics, Yeungnam University, Kyongsan 712-749, Korea

E-mail: jhchun@yu.ac.kr

June-Won Park, Department of mathematics, Kyungil University, Kyongsan 712-701, Korea

E-mail: jwpark@kiu.ac.kr