Diffuer 형태의 중공사막 생물반응기를 이용한 기체상 BTX 제거

Performance of a Hellow Fiber Membrane Diffuser for the Biological Removal of Gaseous BTX

  • 손영규 (고려대학교 사회환경시스템공학과) ;
  • 김지형 (고려대학교 사회환경시스템공학과) ;
  • 송지현 (세종대학교 토목환경공학과)
  • Son, Young-Gyu (Dept. of Civil & Environmental Engineering, Korea University) ;
  • Khim, Jee-Hyeong (Dept. of Civil & Environmental Engineering, Korea University) ;
  • Song, Ji-Hyeon (Dept. of Civil & Environmental Engineering, Sejong University)
  • 발행 : 2006.08.01

초록

본 연구는 산기관(diffuser) 형태로 운전되는 중공사막 생물반응기(Hollow Fiber Membrane Diffuser) 시스템을 복합오염물질(benzene, toluene, p-xylene, BTX)처리에 적용해 보고, 생물반응기에 의한 각 물질의 생분해 특성을 평가하기 위하여 수행되었다. 우선 toluene을 단일오염물질로 적용한 예비 실험기간 동안에 75%수준의 안정적인 처리 효율을 확인할 수 있었다. 이후 BTX 복합오염물질을 적용한 본 실험기간 동안에도 별도의 적응기간 및 악영향 없이 70%수준의 처리효율을 얻어낼 수 있었다. 이를 통하여 toluene분해 미생물의 benzene, p-xylene의 분해 능력을 확인하였으며, toluene의 경우 복합오염물질 적용 시 다른 두 물질에 의해 소폭의 분해 저해가 발생하는 것을 알 수 있었다. 또한 분해능 실험에서 측정한 생물반응기의 BTX 분해능은 약 360 $g/m^3/hr$이었으며, 이는 기존의 생물여과공법에 제시된 최대분해능보다 높은 우수한 분해능이었다. 따라서 산기관 형태의 중공사막 생물반응기는 복합오염물질 처리에도 안정적인 운전특성을 나타내었으며, 기존의 VOCs 저감기술을 대체할 수 있는 친환경적인 기술이라고 판단된다.

In this study, a novel bioreactor system using a diffuser type hollow fiber membranes (hollow fiber membrane diffuser, HFMD) was applied to investigate the feasibility and biodegradation capacity for the treatment of a gaseous mixture consisting of benzene, toluene and p-xylene(BTX). First, A mixed culture pre-acclimated to toluene effectively biodegraded the BTX mixture at an overall removal efficiency of approximately 70% for a 20-day operational period. It was found that the biodegradation of toluene was slightly inhibited because of the presence of benzene and p-xylene. Second, the elimination capacity (EC) of total BTX increased up to 360 $g/m^3/hr$, which was substantially higher than maximum ECs for BTEX reported in the biofiltration literature. Consequently, the hollow fiber membrane diffuser was considered as an alternative method over other conventional VOC-treating technologies such as biofilters.

키워드

참고문헌

  1. Chen, C. and Taylor, R.T., 1995, Thermophilic biodegradation of BTEX by two Thermus speies, Biotechnol. Bioeng., 48, 614-624 https://doi.org/10.1002/bit.260480609
  2. Deeb, R.A. and Alvarez-Cohen, L., 1999, Temperature effects and substrate interactions during the aerobic biotrasformation of BTEX mixtures by toluene-enriched consotria and Rhodococcus rhodochrous, Biotechnol. Bioeng., 62, 526-536 https://doi.org/10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8
  3. Deshusses, M.A. and Johnson, C.T., 2000, Development and Validation of a Simple Protocol To Rapidly Determine the Performance of Biofilters for VOC Treatment, Environ. Sci. Technol., 34, 461-467 https://doi.org/10.1021/es9909172
  4. Di Lecce, C., Accarino, M., Bolognese, F., Galli, E., and Barbieri, p., 1997, Isolation and metabolic characterization of a Pseudomonas stutzeri mutant able to grow on the three isomers of xylene, Appl. Micoriol. Biotechnol., 63, 3379-3281
  5. Dolasa, A.R. and Ergas, S.J., 2000, Membrane Bioreactor for Cometabolism of Trichloroethene Air Emissions, J. Environ. Eng. ASCE, 126, 969-973 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:10(969)
  6. Ergas, S.J. and McGrath, M.S., 1997, Membrane Bioreactor Control of Volatile Organic Compound Emmissions, J. Environ. Eng., 123, 593-598 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(593)
  7. Ergas, S.J, Shumway, L., Fitch, M.W., and Neemann, J.J., 1999, Membrane Process for Biological Treatment of Contaminated Gas Streams, Biotechnol. Bioeng., 63, 431-441 https://doi.org/10.1002/(SICI)1097-0290(19990520)63:4<431::AID-BIT6>3.0.CO;2-G
  8. Fitch, M.W., England, E., and Zhang, B., 2002, 1-Butanol Removal from a Contaminated Airstream under Continuous and Diuranl Loading Condtions, J. Air Waste Manage. Assoc., 52, 1288-1297 https://doi.org/10.1080/10473289.2002.10470866
  9. Harwood, C.S. and Gibson, J., 1997, Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes?, Journal of Bacteriology, 179(2), 301-309 https://doi.org/10.1128/jb.179.2.301-309.1997
  10. Jorio, H., Kiared, K., Brzezinski, R, Leroux, A., Viel, G., and Heitz, M., 1998, Treatment of air polluted with high concentration of toluene and xylene in a pilot-scale biofilter, J. Chem. Technol. Biotechnol., 73, 183-196 https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<183::AID-JCTB943>3.0.CO;2-7
  11. Kamarthi, R and Willingham, R.T., 1994, Bench-scale evaluation of air pollution control technology based on a biological treatment process, Proceedings of the 87th Annual Meeting of the Air and Waste Management Association, Cincinnati, OH. Paper N.94-RP115B.05, 6/19-24, p. 16
  12. Kennes, C., Cox, H.H.J., Doddema, H.J., and Harder, W., 1996, Design and performance of biofilters for the removal of alkylbenzene vapors, Journal of Chemical Technology and Biotechnology, 73, 183-196 https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<183::AID-JCTB943>3.0.CO;2-7
  13. Kennes, C. and Veiga, M.C., 2001, Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers
  14. Kim, D. and Kim, H., 2005, Degradation of toluene in a hydrophobic polyethylene hollow fiber membrane bioreactor with pseudomonas putida, Proc. Biochem., 40, 2015-2020
  15. Pressman, J.G, Georgiou, G, and Speitel Jr., G.E., 2000, A Hollow-Fiber Membrane Bioreactor for the Removal of Trichloroethylene from the Vapor Phase, Biotechnol. Bioeng., 68, 548-556 https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<548::AID-BIT9>3.0.CO;2-6
  16. Reij, M.W. and Hartmans, S., 1996, Proprne removal from synthetic waste gas using a hollow-fibre membrane bioreactor, Appl. Microbiol. Biotechnol., 45, 730-736 https://doi.org/10.1007/s002530050755
  17. Schindler, I. and Friedl, a., 1995, Degradation of toluene/heptane mixtures in a trickling-bed bioreactor, Appl. Microbiol. Biotechnol., 44, 230-233 https://doi.org/10.1007/BF00164507
  18. Smith, F.L., Sorial, G.A., Suidan, M.T., Breen, A.W., and Biswas, P, 1996, Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings, Envion. Sci. Technol., 30, 1744-1751 https://doi.org/10.1021/es950743y
  19. Smith, M.A., 1990, The biodegradation of aromatic hydrocarbons in bacteria, Biodegradation, 1, 191-206 https://doi.org/10.1007/BF00058836
  20. Song, J. and Kinney, K.A., 2000, Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity, Biotechnol. Bioeng., 68, 508-516 https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P
  21. Strauss, K.M., Riedel, K.J., and du Plessis, C.A., 2004, Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter, Appl. Microbiol. Biotechnol., 64, 855-861 https://doi.org/10.1007/s00253-003-1483-4
  22. Sun, A.K. and Wood, T.K., 1997, Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase, Biotechnol. Bioeng., 55, 674-685 https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<674::AID-BIT9>3.0.CO;2-E
  23. Tahraoui, K., Samson, R., and Rho, D., 1994, Biodegradation of BTX from waste gases in a biofilter reactor, Proceedings of the 87th Annual Meeting of the Air and Waste Management Association, Cincinnati, OH. Paper N.94-TA260.07P, 6/19-24, p. 13
  24. Van Groenestijn, J.W. and Hesselink, P.G.M., 1993, Biotechniques for air pollution control, Biodegradation, 4, 283-301 https://doi.org/10.1007/BF00695975
  25. Wright, W.F., Schroeder, E.D., Chang, D.P.Y., and Romstad, K., 1997, Performance of a pilot-scale compost biofilter treating gasoline vapor, Journal of Environmental Engineering, 123(6), 547-555 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(547)