Dynamic Behavior of a Growing Drop at the Exit of a Fine Capillary

미세관 출구에서의 드롭성장의 동적인 거동에 관한 연구

  • Kong, Chang-Suk (College of Human Ecology, Pusan National University) ;
  • Kim, Ji-Young (Department of Textile Engineering, Pusan National University) ;
  • Kim, Han-Seong (Department of Textile Engineering, Pusan National University)
  • 공창숙 (부산대학교 생활환경대학) ;
  • 김지영 (부산대학교 공과대학 섬유공학과) ;
  • 김한성 (부산대학교 공과대학 섬유공학과)
  • Published : 2006.08.01

Abstract

Growing drop technique has been developed for measuring the dynamic behavior of drop at the exit of a fine capillary where a drop grows. In this study, the system was designed to simulate the electrospinning process without applying a high voltage to understand the dynamic behavior of PVA solution before ejecting a fluid jet. The system associated with Image analysis technique and numerical analysis method has been developed. Important parameters of the drop formation were extracted by programming image analysis techniques such as fill boundary method and chain cord algorithm. To obtain statistically meaningful data, numerical analysis techniques were programmed. The diameter, volume, contact angle and velocity of fluid head of PVA solution at the exit of a fine capillary have been measured and calculated with various hydrostatic pressures. The integrated system of image analysis and numerical analysis methods has been successfully used to investigate the effect of the hydrostatic force on drop formation.

Keywords

References

  1. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, 'Controlled Deposition of Electrospun Poly (ethylene oxide) Fibers', Polymer, 2001, 42, 8163-8170 https://doi.org/10.1016/S0032-3861(01)00336-6
  2. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, 'The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles', Polymer, 2001, 42, 261-272 https://doi.org/10.1016/S0032-3861(00)00250-0
  3. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, 'Experimental Characterization of Electrospinning the Electrically Forced Jet and Instabilities', Polymer, 2001, 42, 9955-9967 https://doi.org/10.1016/S0032-3861(01)00540-7
  4. P. K. Baumgarten, 'Electrostatic Spinning of Acrylic Microfibers', J Colloid Interf Sci, 1971, 36, 71-79 https://doi.org/10.1016/0021-9797(71)90241-4
  5. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, 'Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films', Polymer, 1999, 40, 7397-7407 https://doi.org/10.1016/S0032-3861(98)00866-0
  6. J. Doshi and D. H. Reneker, 'Electrospinning Process and Applications of Electrospun Fibers', J Electrostatics, 1995, 35, 151-160 https://doi.org/10.1016/0304-3886(95)00041-8
  7. D. H. Reneker and J. Chun, 'Nanometer Diameter Fibers of Polymer, Produced by Electrospinning', Nanotechnology, 1996, 7, 216-223 https://doi.org/10.1088/0957-4484/7/3/009
  8. J. S. Kim and D. H. Reneker, 'Polybenzimidazole Nanofiber Produced by Electrospinning', Polymer Eng Sci, 1999, 39(5), 849-854 https://doi.org/10.1002/pen.11473
  9. L. Larrondo and R. S. J. Manley, 'Electrostatic Fiber Spinning from Polymer Melts. I. Experimental Observations on Fiber Formation and Properties', J Polym Sci Polym Phys Ed., 1981, 19, 909-920 https://doi.org/10.1002/pol.1981.180190601
  10. J. S. Kim and D. S. Kim, 'Thermal Properties of Electro spun Polyesters', Polym J, 2000, 32, 616-618 https://doi.org/10.1295/polymj.32.616
  11. S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, 'Silk Fibroin Nanofibers. Electrospinning, Properties, and Structure', Polym J, 2003, 35, 185-190 https://doi.org/10.1295/polymj.35.185
  12. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, 'Electrospinning of Ultrafine Cellulose Acetate Fibers: Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers', J Polym Sci Polym Phys Ed., 2004, 42, 5-11 https://doi.org/10.1002/polb.10668
  13. X. Zhang, M. T. Harris, and O. A. Basaran, 'Measurement of Dynamic Surface Tension by a Growing Drop Technique', J Colloid Interface Sci, 1994, 168, 47-60 https://doi.org/10.1006/jcis.1994.1392
  14. F. K. Hansen and G. Rodsrud, 'Surface Tension by Pendant Drop', J Colloid Interface Sci, 1991, 141(1), 1-9 https://doi.org/10.1016/0021-9797(91)90296-K
  15. J. Pitas, 'Digital Image Processing Algorithms and Applications' , Addison-Wesley, 2000, pp.241-324
  16. C. H. His, R. R. Bresee, and P. A. Annis, 'Characterizing Fabric Pilling by Using Image Analysis Techniques, Part I: Pill Detection and Description', J Text Inst, 1998, 89(1), 80-95 https://doi.org/10.1080/00405009808658599
  17. W. F. Chen and A. F. Saleeb, 'Constitutive Equations for Engineering Materials', John Wiley & Sons, NY, 1982, pp.175-181
  18. H. P. William, A. T. Saul, T. V. William, and P. F. Brian, 'Numerical Repipes in C++', Cambridge University Press, 2002, pp.111-114
  19. F. M. White, 'Fluid Mechanics', Mcgraw-Hill, 2003, pp.67-74