백서 사구체 상피세포에서 방사선에 의한 Fibronectin, Pai-1, MMP 발현의 변화

Radiation Induced Changes in the Expression of Fibronectin, Pai-1, MMP in Rat Glomerular Epithelial Cell

  • 박우윤 (충북대학교 의과대학 방사선종양학교실) ;
  • 김원동 (충북대학교 의과대학 방사선종양학교실) ;
  • 정영 (충북대학교 의과대학 방사선종양학교실) ;
  • 하태선 (충북대학교 의과대학 소아과학교실) ;
  • 김재성 (서울대학교 의과대학 방사선종양학교실) ;
  • 조문준 (충남대학교 의과대학 방사선종양학교실)
  • Park Woo-Yoon (Department of Radiation Oncology, Chungbuk National Univesity) ;
  • Kim Won-Dong (Department of Radiation Oncology, Chungbuk National Univesity) ;
  • Zheng Ying (Department of Radiation Oncology, Chungbuk National Univesity) ;
  • Ha Tae-Sun (Department of Pediatrics, College of Medicine, Chungbuk National University) ;
  • Kim Jae-Sung (Department of Radiation Oncology, College of Medicine, Seoul National University) ;
  • Cho Moon-June (Department of Radiation Oncology, College of Medicine, Chungnam National University)
  • 발행 : 2006.03.01

초록

목적: 방사선에 의한 신장손상은 궁극적으로 신장 섬유화로 인한 신부전으로 나타나며 여기에는 세포외기질의 변화가 동반된다. 방사선 신장손상에서 신사구체 상피세포의 역할을 알아보기 위하여 방사선에 의한 세포외기질과 연관된 여러 유전자 발현의 변화를 알아보고자 하였다. 대상 및 방법 : 백서 사구체 상피세포 (rat glomerular epithelial cell: GEpC) 에 6 MV 선형가속기 (Siemens, USA)를 이용하여 0, 2, 5, 10, 20 Gy 의 단일 방사선량을 조사한 후 각각 6, 24, 48, 72 시간에 시료를 채취하였다. Northern blot, Western blot, Zymography를 이용하여 fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of matrix metallproteinase-2 (TIMP-2), tissue-type plasminogen activator (t-PA), Urokinase-type plasminogen activator (u-PA)의 발현을 측정하였다. 결과: GEpC 에 대한 10 Gy 단일 방사선 조사후 24 시간부터 Fn mRNA 가 유의한 증가를 나타냈으며 48 시간에 측정한 Fn 단백질은 5, 10 Gy 의 방사선량에서 유의하게 증가되었다. 방사선조사에 의해서 Pai-1 유전자의 발현도 mRNA 및 단백질 단계에서 증가되었으며, 특히 10Gy 조사 후 24, 48 시간에 측정한 mRNA 의 증가는 통계적으로 유의하였다. GEpC에 방사선조사 후 24 시간에 측정한 MMP-2 활성형은 방사선량에 따라 증가하였으나 통계학적 유의성은 없었다. 그밖의 MMP-9, TIMP-2, t-PA 와 u-PA 는 아무런 변화를 나타내지 않았다. 결론 : 방사선에 의하여 GEpC에서 세포외 기질과 관련된 유전자 발현의 번화가 관찰되었으며 이는 방사선 신장 손상에 GEpC가 관여함을 나타낸다.

Purpose: Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Materials and Methods: Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinase-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Results: Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-1 mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Conclusion: Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy.

키워드

참고문헌

  1. Avioli LV, Lazor MZ. Cotlove E. Brace KC. Andrews JR. Early effects of radiation on renal function in man. Amer J Med 1963;34:329-337 https://doi.org/10.1016/0002-9343(63)90120-7
  2. McMillan JI. Riordan JW. Couser WG, Pollock AS. Lovett DH. Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J Clin Invest 1996;97:1094-1101 https://doi.org/10.1172/JCI118502
  3. Odekon LE. Blasi F, Rifkin DB. Requirement for receptorbound urokinase in plasmin-dependent cellular conversion of latent TGF-beta to TGF-beta. J Cell Physiol 1994;158:398-407 https://doi.org/10.1002/jcp.1041580303
  4. Birkedal-Hansen H, Moore WG, Bodden MK, et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993;4:197-250 https://doi.org/10.1177/10454411930040020401
  5. Mentzel S, Van Son JP, De Jong AS, et al. Mouse glomerular epithelial cells in culture with features of podocytes in vivo express aminopeptidase A and angiotensinogen but not other components of the renin-angiotensin system. J Am Soc Nephro 1997;8:706-719
  6. van Det NF. Verhagen NA, Tamsma JT, et al. Regulation of glomerular epithelial cell production of fibronectin and transforming growth factor-beta by high glucose, not by angiotensin II. Diabetes 1997;46:834-840 https://doi.org/10.2337/diabetes.46.5.834
  7. Adler S. Characterization of glomerular epithelial cell matrix receptors. Am J Patho 1992;141:571-578
  8. Kreisberg JI, Karnovsky MJ. Glomerular cells in culture. Kidney Int 1983;23:439-447 https://doi.org/10.1038/ki.1983.40
  9. Seftor EA. Electrophoretic analysis of proteins associated with tumor cell invasion. Electrophoresis 1999;15:454-462 https://doi.org/10.1002/elps.1150150162
  10. Stewart FA. Radiation nephropathy after abdominal irradiation or total body irradiation. Radiat Res 1995;143:235-237 https://doi.org/10.2307/3579208
  11. Weichselbaum RR, Hallahan D, Fuks Z, Kufe D. Radiation induction of immediate early genes; effectors of the radiationstress response. Int J Radiat Oncol Biol Phys 1994;30:229-234 https://doi.org/10.1016/0360-3016(94)90539-8
  12. Zhao W. O'Malley Y. Wei S. Robbins ME. Irradiation of rat tubule epithelial cells alters the expression of gene products associated with the synthesis and degradation of extracellular matrix. Int J Radiat Biol 2000;76:391-402 https://doi.org/10.1080/095530000138736
  13. Robbins ME, O'Malley Y, Zhao W, Davis CS. Bonsib SM. The role of the tubulointerstitium in radiation-induced renal fibrosis. Radiat Res 2001;155:481-489 https://doi.org/10.1667/0033-7587(2001)155[0481:TROTTI]2.0.CO;2
  14. Zhao W. O'Malley Y. Robbins MEC. Irradiation of rat mesangial cells alters the expression of gene products associated with the development of renal fibrosis. Radiat Res 1999;152: 160-169 https://doi.org/10.2307/3580089
  15. Finkelstein JN, Johnston CJ, Baggs R, Rubin P. Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys 1994;28:621-631 https://doi.org/10.1016/0360-3016(94)90187-2
  16. Wegrowski J, Remy J, Martin M, Lafuma C. Fibronectin and glycosaminoglycan synthesis by fibrotic pig fibroblasts in primary culture. Connect Tissue Res 1989;23:237-249 https://doi.org/10.3109/03008208909005624
  17. Wang J, Robbins MEC. Radiation-induced alteration of rat mesangial cell transforming growth factor-beta and expression of the genes associated with the extracellular matrix. Radiat Res 1996;146:561-568 https://doi.org/10.2307/3579557
  18. Woloschak GE, Felcher P. Chang-Liu CM. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: dose-rate effects and protein synthesis requirements. Cancer Lett 1995;92: 135-141 https://doi.org/10.1016/0304-3835(95)03767-Q
  19. Oikawa T, Freeman M, Lo W, Vaughan DE, Fogo A. Modulation of plasminogen activator inhibitor-1 in vivo: a new mechanism for the anti-fibrotic effect of renin-angiotensin inhibition. Kidney Int 1997:51:164-172 https://doi.org/10.1038/ki.1997.20
  20. Ts'ao C. Ward WF. Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells. Radiat Res 1985;101:394-401 https://doi.org/10.2307/3576403
  21. Sawaya R, Tofilon PJ, Mohanam S, et al. Induction of tissue-type plasminogen activator and 72-kDa type-IV collagenase by ionizing radiation in rat astrocytes. Int J Cancer 1994;56:214-218 https://doi.org/10.1002/ijc.2910560212
  22. Lafuma C, EI Nabout RA. Crechet F. Hovnanian A, Martin M. Expression of 72-kDa gelatinase (MMP-2), collagenase (MMP-1), and tissue metalloproteinase inhibitor (TIMP) in primary pig skin fibroblast cultures derived from radiation-induced skin fibrosis. J Invest Dermatol 1994;102:945-950 https://doi.org/10.1111/1523-1747.ep12384118
  23. Gunja-Smith Z, Morales AR, Romanelli R. Woessner JF Jr. Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy: role of metalloproteinases and pyridinoline cross-links. Am J Pathol 1996;148:1639-1648
  24. Carome MA. Striker LJ. Peten EP. et al. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am J Physiol 1993;264:F923-F929
  25. Butler GS, Butler MJ, Atkinson SJ, et al. The TIMP2 membrane type 1 metalloproteinase receptor regulates the concentration and efficient activation of progelatinase A: a kinetic study. J Biol Chem 1998;273:871-880 https://doi.org/10.1074/jbc.273.2.871