Intratumoral Administration of Dendritic Cells Combined with Hyperthermia Induces Both Local and Systemic Antitumor Effect in Murine Tumor Models

온열 요법 후 종양 내 주입한 수지상 세포의 국소 및 원격 항종양 효과

  • Kwon Byung-Hyun (Department of Radiation Oncology, Pusan National University College of Medicine) ;
  • Kim Won-Taek (Department of Radiation Oncology, Pusan National University College of Medicine) ;
  • Kim Young-Kan (Department of Radiation Oncology, Pusan National University College of Medicine) ;
  • Kim Dong-Won (Department of Radiation Oncology, Pusan National University College of Medicine)
  • 권병현 (부산대학교 의과대학 방사선종양학교실) ;
  • 김원택 (부산대학교 의과대학 방사선종양학교실) ;
  • 김용간 (부산대학교 의과대학 방사선종양학교실) ;
  • 김동원 (부산대학교 의과대학 방사선종양학교실)
  • Published : 2006.03.01

Abstract

Puroose: We examined whether intratumoral (i.t.) administration of dendritic cells (DCs) into a treated tumor could induce local and systemic antitumor effects in a mouse tumor model. Methods and Materials: C57BL/6 mice were inoculated s.c. in the right and left thighs with MCA-102 fibrosarcoma cells on day 0 and on day 7, respectively. On day 7, the tumors (usually 6 mm in diameter) on the right thigh were heated by immersing the tumor-bearing leg in a circulating water bath at $43^{\circ}C$ for 30 min; thereafter, the immature DCs were i.t administered to the right thigh tumors. This immunization procedure was repeated on days 7, 14 and 21. The tumors in both the right and left thighs were measured every 7 days and the average sizes were determined by applying the following formula, tumor $size=0.5{\times}(length+width)$. Cytotoxicity assay was done to determine tumor-specific cytotoxic T-lymphocyte activity. Results: Hyperthermia induced apoptosis and heat shock proteins (HSPs) in tumor occurred maximally after 6 hr. For the local treated tumor, hyperthermia (HT) alone inhibited tumor growth compared with the untreated tumors (p<0.05), and furthermore, the i.t. administered DCs combined with hyperthermia (HT + DCs) additively inhibited tumor growth compared with HT alone (p<0.05). On the distant untreated tumor, HT alone significantly inhibited tumor growth (p<0.05), and also HT + DCs potently inhibited tumor growth (p<0.001); however, compared with HT alone, the difference was not statistically significant. In addition, HT + DCs induced strong cytotoxicity of the splenocytes against tumor cells compared to DCs or HT alone. Conclusion: HT + DCs induced apoptosis and increased the expression of HSPs, and so this induced a potent local and systemic antitumor response in tumor-bearing mice. This regimen may be beneficial for the treatment of human cancers.

목적: 마우스 대퇴부에 심은 종양에 43 도의 열을 가한 뒤 수지상 세포를 종양내에 주입하여 국소 및 원격 항종양 효과를 관찰하였다. 대상 및 방법 : 마우스 우측 대퇴부에 MCA-102 fibrosarcoma를 피하로 주입하여 종양을 만들었고, 7일째는 반대편 대퇴부에도 주입하여 종양을 만들었다. 종양 세포를 접종한 지 7 일째 약 6 mm 가 된 종양에 43도의 열을 30 분간 가하고 골수 유래 미성숙 동종 수지상 세포를 종양내에 직접 주입하고, 이를 1 주 간격으로 2회 더 시행했다. $3{\sim}4$일 간격으로 양측 대퇴부의 종양의 크기를 측정하여 국소 및 원격 항종양 효과를 평가하였다. 또한 종양 특이적 면역 반응을 평가하기 위해 마우스의 비장 세포를 분리하여 cytotoxicity를 측정하였다. 결과 : 온열치료는 apoptosis를 유도하고 heat shock protein 발현을 증가시켰고, 6시간 경에 최고치를 보였다. 치료한 국소 종양에 있어서 온열 요법 단독만으로 종양의 성장을 억제했지만, 온열 요법 후 수지상세포를 주입했을 때는 그 성장 억제 효과는 온열요법 단독의 효과보다 높게 나왔다. (p<0.05). 한편 치료하지 않은 원 격종양에 있어서도 온열 요법 단독으로 원격 종앙의 성장 억제 효과를 보였으며 온열 요법 후 수지상 세포 를 주입했을 때도 원격 종양의 성장 억제 효과가 온열 요법 단독보다 높았으나, 그 억제 정도가 온열 요법 단독과 비교하여 통계적인 차이는 없었다 (p>0.05). Cytotoxicity 검사에서 온열요법과 수지상 세포 복합 치료 군에서 가장 높은 세포살해능을 보였고 (p<0.05), 이러한 면역 반응은 종양 특이적이었다. 결론 : 온열요법으로 apoptosis 와 heat shock protein 을 유도하고 종양내에 동종의 미성숙 수지상 세포를 주입하여 국소 및 원격 종양에 높은 항종양 효과를 유도할 수 있었다. 이러한 새로운 치료법은 암 치료에 응용 될 수 있을 것이다.

Keywords

References

  1. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811 https://doi.org/10.1146/annurev.immunol.18.1.767
  2. Albert ML. Pearce SF, Francisco LM. et al. Immature dendritic cells phagocytose apoptotic cells via a $\beta$5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998;188:1359-1368 https://doi.org/10.1084/jem.188.7.1359
  3. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class l-reslricted CTLs. Nature 1998;392:86-89 https://doi.org/10.1038/32183
  4. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252 https://doi.org/10.1038/32588
  5. Srivastava PK, Menoret A. Basu S, Binder R. Quade K. Heat shock proteins come of age: primitive functions acquired new roles in an adaptive world. Immunity 1998;8:657-665 https://doi.org/10.1016/S1074-7613(00)80570-1
  6. Yonezawa M, Ohtsuka T, Matsui N, et al. Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int J Cancer 1996;66:347-351 https://doi.org/10.1002/(SICI)1097-0215(19960503)66:3<347::AID-IJC14>3.0.CO;2-8
  7. Lambert LA, Gibson GR, Maloney M, Barth RJ Jr. Equipotent generation of protective antitumor immunity by various methods of dendritic cell loading with whole cell tumor antigens. J Immunother 2001;24:232-236 https://doi.org/10.1097/00002371-200105000-00006
  8. Zhivotovsky B, Joseph B, Orrenius S. Tumor radiosensitivity and apoptosis. Exp Cell Res 1999;248:10-17 https://doi.org/10.1006/excr.1999.4452
  9. Kaufmann SH, Earnshaw WC. Induction of apoplosis by cancer chemotherapy. Exp Cell Res 2000;256:42-49 https://doi.org/10.1006/excr.2000.4838
  10. Mow BM, Blajeski AL, Chandra J, Kaufmann SH. Apoptosis and the response to anticancer therapy. Curr Opin Oncol 2001;13:453-462 https://doi.org/10.1097/00001622-200111000-00007
  11. Tanaka K, Ito A, Kobayashi T, et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 2005;116: 624-633 https://doi.org/10.1002/ijc.21061
  12. Menoret A. Chandawarkar R. Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Semin Immunol 1998;25:654-60
  13. Okamoto M, Tazawa K, Kawagoshi T. et al. The combined effect against colon-26 cells of heat treatment and immunization with heat treated colon-26 tumour cell extract. Int J Hyperthermia 2000;16:263-273 https://doi.org/10.1080/026567300285277
  14. Castelli C, Ciupitu AM. Rini F, et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 2001;61:222-227
  15. Kim KW, Kim SH, Shin JG. et al. Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 2004;109:685-690 https://doi.org/10.1002/ijc.20036
  16. Candido KA, Shimizu K, McLaughlin JC, et al. Local administration of dendritic cells inhibits established breast tumor growth: implication for apoptosis-induclnc agents. Cancer Res 2001;61:228-236
  17. Nikitina EY, Gabrilovich DI. Combination of $\gamma$ irradiation and dendritic cell administration in treatment of advanced cancer. Int J Cancer 2001;94:825-833 https://doi.org/10.1002/1097-0215(20011215)94:6<825::AID-IJC1545>3.0.CO;2-5
  18. Tong Y. Song W, Crystal RG. Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat pre-existed murine tumors. Cancer Res 2001;61:7530-7535
  19. Kay CS, Choi IB, Jang JY, Kim IA. Thermoradiotherapy in the treatment of advanced stomach cancer. J Korean Soc Ther Radiol 1998;16:27-33
  20. Matzinger P. Tolerance, danger, and the extended family. Annual Rev Immunol 1994;12:991-1045 https://doi.org/10.1146/annurev.iy.12.040194.005015
  21. Dieu-Nosjean MC, Vicari A, Lebecque S. Caux C. Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines. J Leukocyte Biol 1999;66:252-262 https://doi.org/10.1002/jlb.66.2.252
  22. Todryk S, Melcher AA, Hardwick N, et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 1999;163:1398-1408