Abstract
Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.
수문 인자, 특히 강우량의 공간 분포 해석은 수자원 분야에서 중요한 관심사 중 하나이다. 기존의 티센법(Thiessen), 역거리법, 등우선법이 공간적 연속성과 지형 특성을 고려하지 못하는 한계를 가지고 있는데, 본 연구에서는 일강우량에 대한 강우 공간분포 해석의 정확도 향상을 위해 월평균 자료와 평년 강우량 자료를 산출하여, 이들과 수집한 일강우량 자료간의 상관성 분석하였으며 이를 근거로 지구통계학적 분석방법인 코크리깅(Co-kriging) 기법의 이차변수로 적용하여 공간 분포 해석을 실시하였으며, 기존의 역거리법과 단순 크리깅 기법에 의한 분석결과와 비교하였다. 구축한 강우량 자료간의 상관성을 조사한 결과, 일강우량은 당 해의 월평균 강우량 및 전체 자료기간의 월평균 강우량 자료와 높은 상관성을 가지는 것으로 나타났으며, 이 자료들을 Co-kriging 기법에 적용한 결과, 강우 공간 분포의 해석 정확도가 향상되었으며, 향후 다른 기상 상관 인자를 적용함으로서 강우량을 비롯한 수문인자의 공간 분포해석상 문제가 되는 불확실성을 줄일 수 있을 것이다.