블록 움직임벡터 기반의 움직임 객체 추출

Moving Object Extraction Based on Block Motion Vectors

  • 김동욱 (전주대학교 전기전자정보통신공학부) ;
  • 김호준 (전주대학교 전기전자정보통신공학부)
  • 발행 : 2006.08.01

초록

움직임 객체의 추출은 비디오 서비스 등에서 주요한 연구목적 중의 하나이다. 본 논문은 블록 움직임 벡터를 이용하여 움직임 객체를 추출하는 새로운 기법을 제시한다. 이를 위하여, 1) 사후 확률 밀도와 Gibbs 랜덤필드의 이용하여 블록 움직임 벡터를 결정하고, 2) 2-D 히스토그램을 바탕으로 전역 움직임을 구하고, 3) 경계 블록 분할 단계를 통해 객체 추출을 달성한다. 제안된 알고리듬은 특히 압축된 비디오 신호의 움직임 객체에 특히 유용하게 이용될 수 있다. 제안된 알고리듬을 여러 가지 영상에 적용한 결과 양호한 결과를 얻을 수 있었다.

Moving object extraction is one of key research topics for various video services. In this study, a new moving object extraction algorithm is introduced to extract objects using block motion vectors in video data. To do this, 1) a maximum a posteriori probability and Gibbs random field are used to obtain real block motion vectors,2) a 2-D histogram technique is used to determine a global motion, 3) additionally, a block segmentation is fellowed. In the computer simulation results, the proposed technique shows a good performance.

키워드

참고문헌

  1. F. Pereria, T Ebranhimi, The MPEG-4 Book, Prentice-Hall PTR, Englewood Cliffs, NJ, 2003
  2. L. Favalli, A. Mecoeci, and F. Moschetti, 'Object tracking for retrieval applications in MPEG-2,' IEEE Trans. Circuits Syst. Video Technology,' vol. 10, pp. 427-432, Apr. 2000 https://doi.org/10.1109/76.836288
  3. D. Zhong and S. F. Chang, 'An Integrated approach for content-based video object segmentation and retrieval,' IEEE Trans. Circuits System Video Technology, vol. 9, pp. 1259-1268, Dec. 1999 https://doi.org/10.1109/76.809160
  4. R. V. Bam, K. R. Ramakrishnan, and S. H. Srinivasan, 'Video object segmentation: a compressed domain approach,' IEEE Trans. Circuits System Video Technology, vol. 14, pp. 462-474, April 2004 https://doi.org/10.1109/TCSVT.2004.825536
  5. N. Paragios and G. Tziritas, 'Adaptive detection and localization of moving objects in image sequences,' Signal Processing: Image Comm., vol. 14, pp. 277-296, Feb. 1999 https://doi.org/10.1016/S0923-5965(98)00011-3
  6. I. Kompatsiaris, G. Mantzaras, and M. G. Strintzis, 'Spatiotemporal segmentation and tracking og objects in color image sequence,' Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2000), vol. 5, Geneva, Switzerland, May 2000, pp. 29-32
  7. C. Stiller, 'Motion-estimation for coding of moving video at 8 kbit/s with Gibbs modeled vectorfield smothing,' SPIE vol. 1360 Visual Comm. and Image Proc. '90., pp. 468-476, 1990
  8. Derin, Cole: 'Segmentation of textures images using Gibbs Random Fields,' Computer Vision, Graphics and Image Processing 35, pp. 72-98, 1986 https://doi.org/10.1016/0734-189X(86)90126-X
  9. P. Salembier and F. Marques, 'region-based representations of image and video: segmentaiton tools for multimedia services,' IEEE Trans. Circuits and Video Technol. vol 9, pp. 1147-1169, Dec. 1999 https://doi.org/10.1109/76.809153