참고문헌
- Brecht, M. Datnoff, L., Nagata, R. and Kucharek, T. 2003. The role of silicon in suppressing tray leaf spot development in St. Augustine grass. Publication in University of Florida, 1-4, Gainesville
-
Fujita, H., Izawa, M. and Ymazaki, H. 1962.
${\gamma}-Ray$ -induced formation of gold sol from chloroauric acid solution. Nature 196:666-667 https://doi.org/10.1038/196666a0 - Garver, T. L. W., Thomas, B. J., Robbins, M. P. and Zeyen, R. J. 1998. Phenyalanine ammonia-lyase inhibition, autofluorescence, and localized accumulation of of silicon, calcium and manganese in oat epidermis attacked by the powdery mildewfungus Blumeria graminis (DC) speer. Physiol. Mol. PIant Pathol. 52:223-243 https://doi.org/10.1006/pmpp.1998.0148
- Kanto, T., Miyoshi, A., Ogawa, T., Maekawa, K. and Aion, M. 2004. Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J. Gen. Plant Pathol. 70:207-211
- Kim, S. G., Kim, K. W., Park, E. U. and Choi, D. 2002. Siliconinduced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095-1103 https://doi.org/10.1094/PHYTO.2002.92.10.1095
-
Kim, T. N., Feng, Q. L., Kim, J. O., Wu, J., Wang, H., Chen, G. C. and Cui, F. Z. 1998. Antimicrobial effects of metal ions (
$Ag^+,\;Cu^{2+},\;Zn^{2+}$ ) in hydroxyapatite. J. Mater. Sci. Mater. Med. 9:129-134 https://doi.org/10.1023/A:1008811501734 - Ma, J. F., Goto, S., Tami, K. and Ihcii, M. 2001.Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 127:1773-1780 https://doi.org/10.1104/pp.010271
- Marignier, J. L., Belloni, J., Delcourt, M. O. and Chevalier, J. P. 1985. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature 317:344-345 https://doi.org/10.1038/317344a0
- Mallick, K., Witcomb, M. J. and Scurrell, M. S. 2004. Polymer stabilized silver nanopartides: A photochemical synthesis route. J. Materials Sci. 39:4459-4463 https://doi.org/10.1023/B:JMSC.0000034138.80116.50
- O'Neill, M., Vine, M. G., Beezer, G., Bishop, A. E., Hadgraft, A. H., Labetoulle, J., Walkeer, M. and Bowler, P. G. 2003. Antimicrobial properties of silver-containing wound dressings: a microcalorimertic study. Int. J. Pharm. 263:61-68 https://doi.org/10.1016/S0378-5173(03)00361-2
-
Oh, S.-D., Lee, S., Choi, S.-H., Lee, I.-S., Lee, Y.-M., Chun, J.-H. and Park, H.-J. 2006. Synthesis of Ag and
$Ag-SiO_2$ nanoparticles by${\gamma}-irradiation$ and their antibacterial and antifungal effiency against Salmonella enterica serovar typhimurium and Botrytis cinerea. Colloid and Surfaces A: Physicochem. Eng. Aspects 275:228-233 https://doi.org/10.1016/j.colsurfa.2005.11.039 - Shankar, S. S., Ahmad, A. and Sastry, M. 2003. Gerariium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19:1627-1631 https://doi.org/10.1021/bp034070w
- Thomas, S. and McCubin, P. 2003. A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. J. Wound Care. 12:101-107 https://doi.org/10.12968/jowc.2003.12.3.26477
- Wainwright, M., Grayston, S. J. and deJong, P. 1986. Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzyme Micro. Technol. 8:597-600 https://doi.org/10.1016/0141-0229(86)90117-1
- Yadav, V., Gupta, J., Mandhan, R., Chhillar, A. K., Dabur, R, Singh, D. D. and Sharum, G. L. 2005. Investigations on anti-Aspergillus properties of bacterial products. Lett. Appl. Microbiol. 41:309-314 https://doi.org/10.1111/j.1472-765X.2005.01772.x
- Yau, C. P, Wang, L., Yu, M., Zee, S. Y. and Yip, W. K. 2004. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. J. Exp. Bot. 55:547-555 https://doi.org/10.1093/jxb/erh055
피인용 문헌
- Preparation of colloidal silver nanoparticles in poly(N-vinylpyrrolidone) by γ-irradiation vol.3, pp.3, 2008, https://doi.org/10.1080/17458080802353527
- The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips 2017, https://doi.org/10.1007/s10535-017-0751-6
- Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan byγ-irradiation vol.5, pp.2, 2010, https://doi.org/10.1080/17458080903383324
- Foliar application of β-d-glucan nanoparticles to control rhizome rot disease of turmeric vol.72, 2015, https://doi.org/10.1016/j.ijbiomac.2014.10.043
- Physiological effects of nanosilver on vegetative mycelium, conidia and the development of the entomopathogenic fungus,Isaria fumosorosea vol.25, pp.8, 2015, https://doi.org/10.1080/09583157.2015.1020284
- Application of Silver Nanoparticles for the Control ofColletotrichumSpeciesIn Vitroand Pepper Anthracnose Disease in Field vol.39, pp.3, 2011, https://doi.org/10.5941/MYCO.2011.39.3.194
- Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties vol.81, pp.10, 2012, https://doi.org/10.1016/j.radphyschem.2012.04.013
- Myconanoparticles: synthesis and their role in phytopathogens management vol.29, pp.2, 2015, https://doi.org/10.1080/13102818.2015.1008194
- Induction of systemic resistance againstPapaya ring spot virus(PRSV) and its vectorMyzus persicaebyPenicillium simplicissimumGP17-2 and silica (Sio2) nanopowder vol.61, pp.4, 2015, https://doi.org/10.1080/09670874.2015.1070930
- Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity vol.3, pp.3, 2013, https://doi.org/10.1007/s13204-012-0121-9
- Use of silver nanoparticles for managing Gibberella fujikuroi on rice seedlings vol.74, 2015, https://doi.org/10.1016/j.cropro.2015.04.003
- Effect of Gamma Irradiation and Its Convergent Treatments on Lily Leaf Blight Pathogen, Botrytis elliptica, and the Disease Development vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.071
- Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies vol.22, pp.4, 2014, https://doi.org/10.1007/s13233-014-2054-5
- Biosynthesis of silver nanoparticles using Artemisia annua callus for inhibiting stem-end bacteria in cut carnation flowers vol.11, pp.2, 2017, https://doi.org/10.1049/iet-nbt.2015.0125
- Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens 2018, https://doi.org/10.1007/s11356-017-9581-5
- Silver nanoparticles in soil–plant systems vol.15, pp.9, 2013, https://doi.org/10.1007/s11051-013-1896-7
- A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis vol.81, pp.2, 2012, https://doi.org/10.1016/j.radphyschem.2011.10.004
- Luminescence and antibacterial studies of silver nanoparticles using the esterases-containing latex of E. Tirucalli plant via green route vol.131, pp.4, 2016, https://doi.org/10.1140/epjp/i2016-16074-x
- Nanoparticles and their Impact on Plants vol.5, pp.2, 2015, https://doi.org/10.3923/rjnn.2015.27.43
- Evaluation of Silver Nanoparticle Toxicity of Coleus aromaticus Leaf Extracts and its Larvicidal Toxicity against Dengue and Filariasis Vectors vol.6, pp.4, 2016, https://doi.org/10.1007/s12668-016-0374-y
- Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid vol.187, 2009, https://doi.org/10.1088/1742-6596/187/1/012072
- Role of nanotechnology in agriculture with special reference to management of insect pests vol.94, pp.2, 2012, https://doi.org/10.1007/s00253-012-3969-4
- Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi vol.62, 2013, https://doi.org/10.1016/j.ijbiomac.2013.10.012
- Antifungal activity of silver ion on ultrastructure and production of aflatoxin B1 and patulin by two mycotoxigenic strains, Aspergillus flavus OC1 and Penicillium vulpinum CM1 vol.24, pp.3, 2014, https://doi.org/10.1016/j.mycmed.2014.02.009
- Nanomaterials in plant tissue culture: the disclosed and undisclosed vol.7, pp.58, 2017, https://doi.org/10.1039/C7RA07025J
- Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi vol.93, pp.10, 2009, https://doi.org/10.1094/PDIS-93-10-1037
- Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi vol.40, pp.1, 2012, https://doi.org/10.5941/MYCO.2012.40.1.053
- Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture vol.99, pp.3, 2015, https://doi.org/10.1007/s00253-014-6296-0
- Nanoparticles for pest control: current status and future perspectives 2017, https://doi.org/10.1007/s10340-017-0898-0
- Nanoparticulate material delivery to plants vol.179, pp.3, 2010, https://doi.org/10.1016/j.plantsci.2010.04.012
- Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems vol.142, pp.2, 2015, https://doi.org/10.1007/s10658-015-0608-9
- Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato vol.75, 2015, https://doi.org/10.1016/j.ijbiomac.2015.01.027
- Controlling Botrytis elliptica Leaf Blight on Hybrid Lilies through the Application of Convergent Chemical X-ray Irradiation vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.09.2015.0187
- Green synthesis and characterization of silver (Ag) nanoparticles using neem leaf extract and its antifungal activity against seed borne pathogens in chilli vol.11, pp.1, 2016, https://doi.org/10.15740/HAS/TAJH/11.1/109-113
- RETRACTED: Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract vol.121, 2014, https://doi.org/10.1016/j.saa.2013.10.073
- Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks vol.8, pp.1, 2017, https://doi.org/10.1146/annurev-food-041715-033338
- Nanopesticide research: Current trends and future priorities vol.63, 2014, https://doi.org/10.1016/j.envint.2013.11.015
- Effect of carbon nanotubes in micropropagation of GF677 (Prunus amygdalus×Prunus persica) rootstock pp.1155, 2017, https://doi.org/10.17660/ActaHortic.2017.1155.35
- Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing vol.84, pp.1, 2011, https://doi.org/10.1016/j.carbpol.2010.12.032
- Antifungal silver nanoparticles: synthesis, characterization and biological evaluation vol.30, pp.1, 2016, https://doi.org/10.1080/13102818.2015.1106339
- Nanofertilizers and nanopesticides for agriculture vol.15, pp.1, 2017, https://doi.org/10.1007/s10311-016-0600-4
- Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges vol.5, 2017, https://doi.org/10.3389/fchem.2017.00006
- Comparative analysis of the effect of silver nanoparticle and silver nitrate on morphological and anatomical parameters of banana under in vitro conditions 2017, https://doi.org/10.1080/24701556.2017.1357605
- Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling vol.43, pp.16, 2013, https://doi.org/10.1080/10643389.2012.671750
- Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review vol.23, pp.1, 2014, https://doi.org/10.1007/s13562-013-0204-z
- Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism vol.47, pp.4, 2012, https://doi.org/10.1016/j.procbio.2012.01.006
- Rapid biological synthesis of silver nanoparticles using Kalopanax pictus plant extract and their antimicrobial activity vol.31, pp.11, 2014, https://doi.org/10.1007/s11814-014-0149-5
- Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens vol.140, pp.2, 2014, https://doi.org/10.1007/s10658-014-0399-4
- Green Synthesis of Metallic Nanoparticles via Biological Entities vol.8, pp.11, 2015, https://doi.org/10.3390/ma8115377
- Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: for controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems vol.5, pp.106, 2015, https://doi.org/10.1039/C5RA17121K
- Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens vol.7, 2017, https://doi.org/10.1038/srep45154
- Nano silver treatment is effective in reducing bacterial contaminations ofAraucaria excelsaR. Br. var.glaucaexplants vol.62, pp.4, 2011, https://doi.org/10.1556/ABiol.62.2011.4.12
- Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks 2016, https://doi.org/10.1007/s40011-016-0791-2
- Physiological and biochemical response of plants to engineered NMs: Implications on future design vol.110, 2017, https://doi.org/10.1016/j.plaphy.2016.06.014
- Nanotechnology in agriculture, livestock, and aquaculture in China. A review vol.35, pp.2, 2015, https://doi.org/10.1007/s13593-014-0274-x
- Silver Core-Shell Nanoclusters Exhibiting Strong Growth Inhibition of Plant-Pathogenic Fungi vol.2015, 2015, https://doi.org/10.1155/2015/241614
- Application of combined treatment for control of Botrytis cinerea in phytosanitary irradiation processing vol.99, 2014, https://doi.org/10.1016/j.radphyschem.2014.01.025
- Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis vol.6, pp.1, 2016, https://doi.org/10.1007/s13204-015-0407-9
- Synthesis of a new electrically conducting nanosized Ag–polyaniline–silica complex using γ-radiolysis and its biosensing application vol.79, pp.8, 2010, https://doi.org/10.1016/j.radphyschem.2010.02.005
- Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.) vol.4, pp.1, 2014, https://doi.org/10.1186/s13588-014-0011-0
- Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities vol.60, pp.39, 2012, https://doi.org/10.1021/jf302154y
- Antimycotic Activity of Nanoparticles of MgO, FeO and ZnO on some Pathogenic Fungi vol.2, pp.4, 2012, https://doi.org/10.4018/ijmmme.2012100105
- Antifungal Properties of Ag-SiO2 Core-Shell Nanoparticles against Phytopathogenic Fungi vol.476-478, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.476-478.814
- Antifungal Activity of Endophyte Cultures of Morus alba L. against Phytopathogenic Fungi vol.641-642, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.641-642.615
- Application of Silver Nanostructures Synthesized by Cold Atmospheric Pressure Plasma for Inactivation of Bacterial Phytopathogens from the Genera Dickeya and Pectobacterium vol.11, pp.3, 2018, https://doi.org/10.3390/ma11030331
- Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3806-0
- Antibacterial Activity of Fructose-Stabilized Silver Nanoparticles Produced by Direct Current Atmospheric Pressure Glow Discharge towards Quarantine Pests vol.8, pp.10, 2018, https://doi.org/10.3390/nano8100751
- The Future of Nanotechnology in Plant Pathology vol.56, pp.1, 2018, https://doi.org/10.1146/annurev-phyto-080417-050108
- Fungal Biosynthesis of Silver Nanoparticles and Their Role in Control of Fusarium Wilt of Sweet Pepper and Soil-borne Fungi in vitro vol.14, pp.6, 2018, https://doi.org/10.3923/ijp.2018.773.780
- Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges pp.2051-8161, 2019, https://doi.org/10.1039/C8EN00645H
- Phytosynthesis of nanoparticles: concept, controversy and application vol.9, pp.1, 2014, https://doi.org/10.1186/1556-276X-9-229
- Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato vol.9, pp.1, 2019, https://doi.org/10.3390/agronomy9010021