

Comparison of Hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina

BAEK, JIN-SOOK¹, EUN-HYE CHOI¹, YOUNG-SU YUN¹, SUN-CHANG KIM², AND MI-SUN KIM^{1*}

¹Biomass Research Center, Korea Institute of Energy Research, Daejeon 305-343, Korea

²Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

Received: November 29, 2005 Accepted: January 31, 2006

Abstract The properties related to the temperature and oxygen stability of the cytoplasmic hydrogenases from the fermentative strict anaerobic bacterium, Clostridium butyricum NCIB 9576 (Cl. butyricum), and purple sulfur phototrophic bacterium, Thiocapsa roseopersicina NCIB 8347 (T. roseopersicina), were compared. The optimum temperatures for the growth of Cl. butvricum and T. roseopersicina were 37°C and 25°C, respectively, whereas those for the H₂ evolution of the cytoplasmic hydrogenases prepared from Cl. butyricum (C-H₂ase) and T. roseopersicina (T-H₂ase) were 45°C and 65°C, respectively. The T-H₂ase was more thermostable than the C-H₂ase and retained its full activity for 5 h at 50°C under anaerobic conditions and 90% of its activity at 60°C, whereas the C-H₂ase lost its activity drastically at 50°C. The optimum pHs for H₂ oxidation of the C-H₂ase and T-H₂ase were 9.0 and 7.5, respectively. Both enzymes showed a maximum H₂ evolution activity at pH 7.0. Under aerobic conditions, 80% of the T-H₂ase activity was retained for 10 h at 30°C, and 50% of the activity remained after 6 days under the same experimental conditions. However, the C-H2 ase was labile to oxygen and lost its activity immediately on exposure to air. Therefore, these properties of the T-H₂ase are expected to be advantageous for application in *in vitro* biological H₂ production

Key words: Hydrogenase, Clostridium butyricum, Thiocapsa roseopersicina, characterization

Hydrogenase (H₂ase) was first described by Stepheneson and Stickland in 1931 [1] as a bacterial enzyme that reversibly catalyzes the oxidation and production of hydrogen according to the following reaction: $2H^{+}+2e \leftrightarrow H_{2}$. H_{2} as activity was subsequently found in a number of anaerobic and aerobic

*Corresponding author Phone: 82-42-860-3554; Fax: 82-2-42-860-3739; E-mail: bmmskim@kier.re.kr

bacteria, various groups of algae, anaerobic protozoa, and archaea. The physiological function of H₂ases varies: they can serve as redox safety valves to dispose of excess reducing power; function as generators of chemical energy by taking up and oxidizing H2; or work to maintain a reducing environment for reactions of crucial importance, such as the fixation of dinitrogen [2]. H₂ases (cytochrome c3, oxidoreductase, EC 1.18.99.1) are classified into two major families on the basis of the metal content of their respective dinuclear catalytic centers: i.e., nickel-iron (NiFe)-H₂ases and iron only (Fe)-H₂ases [1]. Some NiFe H₂ases also contain selenium at their catalytic center in the form of selenocysteine. The two H₂ases families differ functionally from each other in that NiFe H2ases tend to be involved in H₂ oxidation, whereas Fe H₂ases are involved in H₂ production. Moreover, NiFe H_2 ases are approximately 10^{-1} – 10^{-2} times less active and have 10² times more affinity for H₂ than Fe H₂ases. It is also known that some NiFe H₂ases retain their activity during exposure to oxygen and carbon monoxide. H₂ases isolated from the phototrophic bacteria *Thiocapsa* roseopersicina and Rhodobacter capsulatus are NiFe-H₂ases, whereas those isolated from Clostridium pasteuranium and *Clostridium acetobutyricum* are Fe-H₂ases.

In recent years, interest in bio-H₂ production has resulted in a considerable amount of research into the use of whole cell or cellular components [3–5]. Such application-oriented studies have also increased basic knowledge on H₂ evolving microorganisms and the properties of various H₂ases [6]. Yet, although related research is being actively pursued with some encouraging preliminary results, major problems related to the utilization of H₂ases still remain. Specifically, H₂ases are generally unstable and sensitive to oxygen.

Accordingly, this study prepared fractions of cytoplasmic H₂ases from the fermentative strict anaerobic bacterium Clostricium butyricum NCIB 9576 (Cl. butyricum), and the purple sulfur phototrophic bacterium Thiocapsa roseopersicina NCIB 8347 (T. roseopersicina), and compared their properties in terms of their temperature, oxygen, and pH stabilities to determine the characteristics of the H₂ases for bio-H₂ production.

MATERIALS AND METHODS

Strains and Cultivation

The Clostridium butvricum NCIB 9576 was cultivated in a 5-1 flask containing 31 of a PYG medium supplemented with 1% glucose at 37°C [7]. After inoculation, the flask was flushed with argon gas for 20 min to develop anaerobic conditions. The inoculum was then cultivated in a 165-ml serum bottle (working volume of 50 ml) under the same conditions. The cells were harvested during the late exponential phase by centrifugation after 6 h of cultivation. Meanwhile, the Thiocapsa roseopersicina NCIB 8347 was photoautotrophically grown at 27°C in a 3.6-1 flat vertical acryl reactor containing 3 l of Pfennig's medium containing 0.05% acetate [8]. The culture was continuously illuminated by 5 klux from a halogen lamp and sparged with nitrogen gas containing 1% carbon dioxide for agitation and to supply a carbon source at a flow rate of 200 ml/min. The cells were harvested by centrifugation during the late exponential phase after 18 h of cultivation.

Preparation of Cytoplasmic Enzyme Extract

The cells were suspended in a 50 mM phosphate buffer (pH 7.0) and disrupted by sonication (Sonic dismembrator 550, Fisher) with continuous argon gas flushing at 4° C. The cell debris was removed by ultracentrifugation (80,000 × g, 4° C, 1 h) and the resulting supernatant used as the cytoplasmic H₂ase [9].

H₂ase Assay

The H_2 evolution activity was assayed by the evolution of H_2 from methyl viologen reduced by sodium dithionite [10]. In a 5-ml vacuum vial, 1.4 ml of a reaction mixture containing a 50 mM sodium phosphate buffer (pH 7.0), 2.5 mM methyl viologen, and the enzyme solution was prepared under a nitrogen atmosphere. The reaction was then started by adding 0.1 ml of 230 mM sodium dithionite to the reaction mixture after preincubation. The H_2 evolution was measured every 10 min using a gas chromatograph 14-B (Shimadzu, Kyoto, Japan) equipped with a molecular sieve 5A column (3 mm×2 m) and thermal conductivity detector. One unit of activity was defined as the amount of H_2 ase evolving 1 μ mol H_2 per minute.

The hydrogen-oxidation activity of the H_2 ases was measured spectrophotometrically using methylene blue as an electron acceptor based on the method of Cammack *et al.* [11]. The reaction mixture (2.5 ml) was prepared with 0.5 mM methylene blue in a 50 mM sodium phosphate buffer (pH 7.0), and then placed in a rubber stoppered

cuvette and saturated with H_2 . The reaction was initiated by adding the enzyme preparation to the cuvette after 10 min of preincubation at the same temperature as the reaction. The reduction of methylene blue was monitored by measuring the absorbance at a wavelength of 570 nm. One unit of enzyme activity was defined as the amount of hydrogenase oxidizing 1 μ mol methylene blue per min.

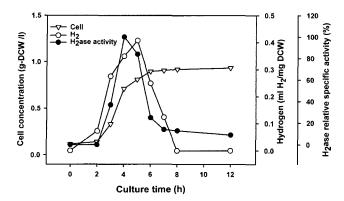
The protein concentration was determined by the Lowry method using a protein assay kit (Bio-Rad, U.S.A.). Bovine serum albumin was used as the standard.

Oxygen Stability

The cytoplasmic preparation was exposed to an air or oxygen atmosphere for 10 h at 30°C, and then the residual enzyme activity for H₂ evolution was measured at 40°C for the C-H₂ase and 50°C for the T-H₂ase. In addition, the residual enzyme activity for H₂ evolution was also measured at 50°C after incubating the T-H₂ase cytoplasmic preparation in an air or oxygen atmosphere for 6 days at 4°C or 25°C.

Temperature

The optimum temperatures for H_2 evolution and oxidation reactions by the cytoplasmic preparations were determined by measuring each activity over a temperature range of 30 to 80°C. Meanwhile, the thermostability was examined by incubating the enzyme preparations at various temperatures, and assessing the remaining activity by measuring the H_2 evolution activity at 40°C for the C- H_2 ase and 50°C for the T- H_2 ase.

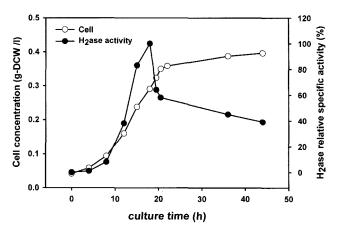

pН

The effect of pH on the $\rm H_2$ ase activity of the cytoplasmic preparations was investigated at various pH values. The $\rm H_2$ evolution activity was measured in a 50 mM buffer over pH ranges of 6.0 to 7.5 (PIPES), 7.5–8.5 (EPPS), and 8.5–10 (CHES) at 50°C, whereas the $\rm H_2$ oxidation activity was measured in a 50 mM sodium phosphate buffer (pH 6.0–7.5), 50 mM Tris-HCl buffer (pH 7.5–9.0), and 50 mM glycine-NaOH buffer (pH 9.0–10.5) at 50°C.

RESULTS AND DISCUSSION

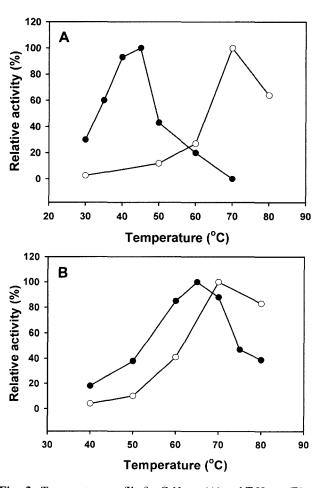
Growth and H2 Production

The H₂ productivity, cell growth, and H₂ase activity of the mesophilic strict anaerobic bacterium *Cl. butyricum* NCIB 9576 were measured under the experimental conditions described in Materials and Methods. The logarithmic growth phase continued for 4 h in a synthetic medium containing 1% glucose, and the cell generation time for this growth phase was 20 min. The cell concentration reached 0.9 g-DCW/l-culture after 6 h of cultivation, and the pH gradually decreased to 4.5, resulting in a cessation


Fig. 1. Cell growth and hydrogenase activity of *Cl. butyricum* NCIB 9576.

 ∇ , Cell concentration; \bigcirc , H_2 produced; \bullet , H_2 evolution activity. *Cl. butyricum* NCIB 9576 was cultivated in PYG medium containing 1% glucose. H_2 production was determined by gas chromatography. H_2 evolution activity was measured at 40°C using reduced methyl viologen.

of cell growth. The H_2 as activities were influenced by the cell growth during the logarithmic growth phase (Fig. 1).


Cl. butyricum produced H₂ at 1.17 l-H₂/g-DCW for 12 h using 1% glucose as the carbon source. During the logarithmic growth phase, the H₂ase activity significantly increased when the cell concentration increased, yet it drastically decreased during the stationary growth phase, resulting in a decrease in the H₂ production rate. Changes in the rate of H₂ production during the growth phase have also been observed by other researchers and may be explained as follows: Clostridium sp. showed a biphasic fermentation pattern on a glucose medium under anaerobic conditions. As such, after producing acetate and butyrate from glucose. i.e., the acidogenic phase, the organism switches to the solventogenic phase, where acetone, butanol, and ethanol are formed, shortly before entering the stationary phase. This change in the carbon flow from acids to solvents appears to be associated with a modification in the electron flow. In the acidogenic phase, ferredoxin, an electron mediator, is reduced to oxidize the excess NADH produced during glycolysis. The oxidized ferredoxin is regenerated by hydrogenase, using the protons as electron acceptors. whereas in the solventogenic phase, the solvent-producing pathways require more NAD(P)H than can be produced during glycolysis. The reoxidation of the reduced ferredoxin to produce NAD(P)H then competes with the oxidation of ferredoxin by hydrogenase. As a consequence, the rate of hydrogen production is decreased [12]. The H₂ partial pressure of the culture indicated that it had an effect on H₂ production and H2ase regulation. Thus, the activity of the NAD(P)H-dependent Fe-H₂ase in *Clostridum* sp. decreased as the H₂ partial pressure increased in the culture.

The purple sulfur bacterium *T. roseopersicina* NCIB 8347 was grown photoautotrophically in a modified Pfennig medium that contained 0.05% acetate, plus bubbling nitrogen

Fig. 2. Cell growth and hydrogenase activity of *T. roseopersicina* NCIB 8347.

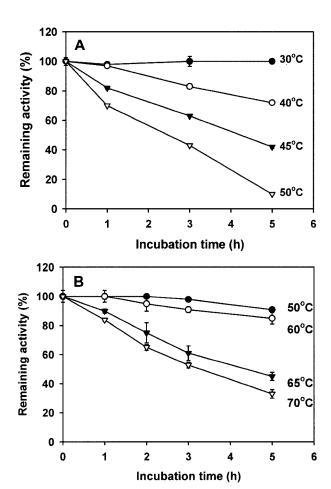

○, Cell concentration; ●, H₂ evolution activity. *T. roseopersicina* NCIB 8347 was cultivated under photoautotrophic conditions in Pfennig's medium. H₂ evolution activity was measured at 50°C using reduced methyl viologen.

Fig. 3. Temperature profile for C-H₂ase (**A**) and T-H₂ase (**B**). Activities of C-H₂ase were measured in 50 mM PIPES buffer (pH 7.0) for H₂ evolution (\bullet) and in 50 mM Glycine-NaOH buffer (pH 9.0) for H₂ oxidation (\bigcirc). Activities of T-H₂ase were measured in 50 mM PIPES buffer (pH 7.0) for H₂ evolution and in 50 mM Tris-HCl buffer (pH 7.5) for H₂ oxidation.

containing 1% CO₂. The cell concentration increased to 0.29 g-DCW/l-culture after 18 h of cultivation (Fig. 2). The H₂ase-specific activity increased as the cell concentration increased during the logarithmic growth phase, and then decreased drastically during the stationary phase. *T. roseopersicina* NCIB 8347 showed a different pattern of H₂ase activity compared with *T. roseopersicina* grown under photoheterotrophical culture conditions using lactate and glutamate as the carbon and nitrogen source, respectively, as the H₂ production started from the late logarithmic growth phase and continued to the stationary phase until the cell growth leveled out.

The cytoplasmic fraction prepared from *Cl. butyricum* showed both evolution and oxidation H₂ase activities, yet the membrane fraction showed neither. Adams *et al.* [6] already reported on two soluble H₂ases from *Cl. pastertianum* involved in H₂ evolution and oxidation. However, under the present experimental conditions, the cytoplasmic fraction of *T. roseopersicina* only exhibited evolution H₂ase activity,

Fig. 4. Thermostability of C- H_2 ase (**A**) and T- H_2 ase (**B**) for H_2 evolution.

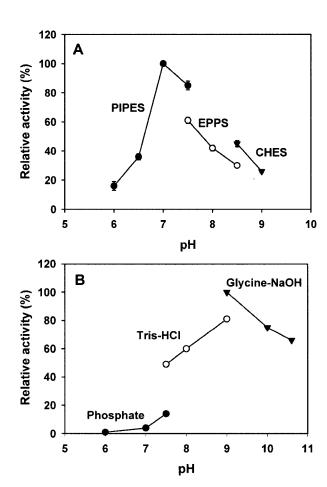
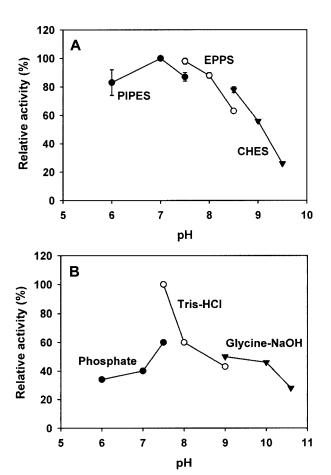

Enzymes were incubated at various temperatures under argon, and the remaining H_2 evolution activity was measured at 40°C for C- H_2 ase and 50°C for T- H_2 ase, respectively.

Table 1. Determination of D-value and z-value for $C-H_2$ as and $T-H_2$ as e.

2			•
	Temp (°C)	D-value (h) ^a	z-value (°C)b
C-H ₂ ase	30	393.3	10.63
	40	33.79	
	45	13.67	
	50	5.210	
T-H ₂ ase	50	121.6	19.61
	60	65.50	
	65	35.00	
	70	10.27	

^aThe D-value was determined by the time in hours required for a 90% reduction in the enzyme activity.

whereas the membrane fraction showed both activities, with mainly oxidation activity. This appears to correspond with a previous report by Kovacs *et al.* [2] wherein two membrane-bound H_2 asses were identified in *T. roseopersicina*, a soluble H_2 ase and a sensor H_2 ase.


Fig. 5. pH profile for *Cl. butyricum* NCIB 9576 H₂ase activity. H₂ evolution (**A**) and H₂ oxidation (**B**) activities of C-H₂ase were measured in buffers with various pH values at 40°C.

^bThe z-value is the number of degrees of temperature change necessary to change the D-value by a factor of 10.

Temperature

The optimum temperatures for the H₂ evolution of the C-H₂ase and T-H₂ase were 45°C and 65°C, respectively, whereas the optimum growth temperatures for *Cl. butyricum* and *T. roseopersicina* were 37°C and 25°C, respectively (Fig. 3). The temperature profiles for the H₂ oxidation reactions of the C-H₂ase and T-H₂ase were similar, and both H₂ases showed a maximum activity at 70°C. The C-H₂ase retained its full activity at 30°C for 5 h, and retained 75% and 45% of its activity after heating at 40°C and 45°C for 5 h, respectively (Fig. 4A). The T-H₂ase was more thermostable than the C-H₂ase, retaining its full activity after heating at 50°C for 1 h at 50°C, and losing only 10% of its activity after 5 h (Fig. 4B). It also maintained 80% of its activity after incubation at 70°C for 1 h.

The D-value and z-value, indicating the index for the enzyme thermostability, were calculated and are compared in Table 1. The D-value for the C-H₂ase at 50° C was 5.2 h, whereas that for the T-H₂ase was 121 h. The z-value for the C-H₂ase was 10.6° C, whereas that for the T-H₂ase was

Fig. 6. pH profile for *T. roseopersicina* NCIB8347 H₂ase activity. H₂ evolution (**A**) and H₃ oxidation (**B**) activities of T-H₂ase were measured

in buffers of various pH values at 50°C.

19.6°C. Therefore, the T-H₂ase was more thermostable than the C-H₂ase. Nishihara *et al.* [13] previously reported a thermophilic and oxygen-stable membrane-bound H₂ase from the marine hydrogen oxidizing bacterium *Hydrogenovibrio marinus*, which retained 90% of its activity after heating at 70°C for 50 min. When compared with their data, the present T-H₂ase showed a similar thermostability with *H. marinus*, although originated from a mesophile.

рH

A wide pH range from 6 to 10 was investigated using different types of buffer to determine the optimum pH for H₂ase activity. The H₂ase activities were influenced according to the pH range and type of buffer. As shown in Fig. 5, the optimum pH values for H₂ evolution and H₂ oxidation for the C-H₂ase were 7.0 (50 mM PIPES) and 9.0 (50 mM Glycine-NaOH), respectively, indicating that the chemical equilibrium of the H₂ase reaction was controlled by the pH value. A neutral pH was preferable for H₂ production, and an alkaline pH for H₂ oxidation. As shown in Fig. 6, the T-H₂ase showed a high H₂ evolution activity within a broad range of pH values from 6.0 to 8.0, with the optimum pH value for H₂ evolution at 7.0 (50 mM PIPES). The optimum pH value for H₂ oxidation by the T-H₂ase was pH 7.5 (50 mM Tris-HCl), with minimal activity at pH 6.0.

Oxygen

As expected from the strict anaerobe *Cl. butyricum*, the C-H₂ase was more sensitive under aerobic conditions than the T-H₂ase, originating from the obligate anaerobic phototroph *T. roseopersicina* (Fig. 7). The T-H₂ase showed a relatively high oxygen stability; specifically, it retained 80% of its original activity at 30°C under exposure to air for 10 h, whereas the C-H₂ase lost 50% of its original activity after only 3 min. To further investigate the prolonged

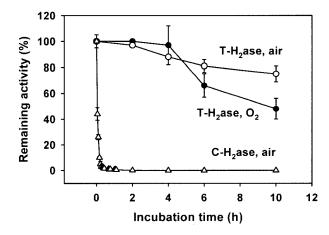
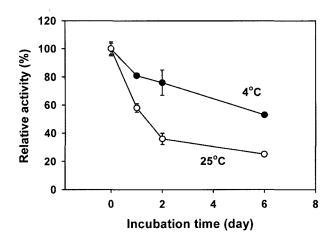



Fig. 7. Oxygen stability of C-H₂ase and T-H₂ase for H₂ evolution. C-H₂ase and T-H₂ase were incubated in stoppered glass vials in air atmosphere (\triangle , \bigcirc) and T-H₂ase was incubated in oxygen atmosphere (\blacksquare) at 4°C. The remaining H₂ evolution activity was measured at 40°C for C-H₂ase and 50°C for T-H₂ase, respectively.

Fig. 8. Prolonged oxygen stability of *T. roseopersicina* hydrogenase for H_2 evolution. T- H_2 ases were incubated in stoppered glass vials in an air atmosphere at $4^{\circ}\text{C}(\bullet)$ or $25^{\circ}\text{C}(\bigcirc)$ for 6 days. The remaining H_2 evolution activity was

oxygen stability of the T-H₂ase, the enzyme was stored at 4 and 25°C for 6 days and the residual activities determined (Fig. 8). At 4°C, the T-H₂ase retained 80% of its original activity after 24 h of storage and 50% after 6 days of storage. At an ambient temperature, the enzyme retained 60% of its activity after 24 h of storage and 30% after 6 days of storage. Several thermophilic H2ases have already been reported from hyperthermophilic archaea, Pyrodictium brockii and Pyrococcus furiosus, which grow optimally at 105°C and 100°C, respectively [14, 15]. The H₂ oxidizing activity in the crude extract from Pd. brockii increases up to 90°C, and retains 80% of its activity at 90°C for 15 min under anaerobic conditions. However, the enzyme is very sensitive to oxygen and cannot produce H₂ from reduced methyl viologen. The optimal temperature for the soluble H₂ase from *Pc. furiosus* for both H₂ oxidation and evolution activities is above 95°C, plus it is remarkably thermostable under anaerobic conditions. However, it loses half of its activity after 6 h of exposure to air [13].

In conclusion, the T- H_2 ase originating from the mesophile *Thiocapsa roseopersicina* showed similar characteristics to the H_2 ases from thermophiles in terms of its thermostability and thermophilicity, and was vastly superior to any other H_2 ase in terms of its oxygen stability. Therefore, these properties are expected to be advantageous for its application in *in vitro* biological H_2 production systems.

REFERENCES

measured at 50°C.

1. Stephenson, M., and L. H. Stickland. 1931. Hydrogenase: A bacterial enzyme activating molecular hydrogen. *Biochem. J.* **25**: 205–214.

- Kovacs, K. L., B. Fodor, A.T. Kovacs, G. Csanadi, G. Maroti, J. Balogh, S. Arvani, and G. Rakhely. 2002. Hydrogenase, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in *Thiocapsa roseopersicina*. *Int. J. Hydrogen Energy* 27: 1463–1469.
- 3. Gong, G. T., S. J. Sim, M. S. Kim, T. H. Park, and D. Pak. 2005. Dark hydrogen production by a green microalga, *Chlamydomonas reinhardtii* UTEX 90. *J. Microbiol. Biotechnol.* **15:** 1159–1163.
- 4. Kim, E. J., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of *Rhodobacter sphaeroides* by removal of the B800-850 light-harvesting complex. *J. Microbiol. Biotechnol.* **15:** 1115–1119.
- Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. H. Lee, D. J. Kim, J. H. Kim, Y. K. Lee, and D. Pak. 2005. Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga *Chlamydomonas reinhardtii* UTEX 90. *J. Microbiol. Biotechnol.* 15: 131–135
- 6. Adams, M. W., L. E. Mortenson, and J. S. Chen. 1981. Hydrogenase. *Biochim. Biophys. Acta* **594**: 105–176.
- Molongoski, J. J. and M. J. Klug. 1976. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments. *Appl. Environ. Microbiol.* 31: 83–90.
- Pfennig, N. and H. G. Truper. 1991. The family Chromatiaceae, pp. 3200–3221. *In A. Balows*, H. G. Truper, M. Dworkin, W. Harder, and K.H. Schleifer (eds.), *The Prokaryotes*. Springer, Berlin.
- Rakhely, G., A. T. Kovacs, G. Maroti, B. D. Fodor, G. Csanadi,
 D. Latinovics, and K. L. Kovacs. 2004. Cyanobacterial type, heterpentameric, NAD⁺-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium *Thiocapsa roseopersicina*. Appl. Environ. Microbiol. 70: 722-728.
- Bryant, F. O. and M. W. Adams. 1989. Characterization of hydrogenase from the hyperthermophilic Archaebacterium, *Pyrococcus furiosus. J. Biol. Chem.* 264: 5070–5079.
- 11. Cammack, R., V. M. Fernandez, and E. C. Hatchikian. 1994. Nickel-iron hydrogenase. *Meth. Enzymol.* **243**: 43–69.
- 12. Gorwa, M., C. Croux, and P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of *Clostridium acetobutylicum* ATCC 824. *J. Bacteriol.* **178**: 2668–2675.
- 13. Nishihara, H., Y. Miyashita, K. Aoyama, T. Kodama, Y. Igarachi, and Y. Takamura. 1997. Charaterization of an extremely thermophilic and oxygen-stable membrane-bound hydrogenase from a marine hydrogenase-oxidizing bacterium *Hydrogenovibrio marinus*. *Biochem. Biophys. Res. Commun.* **232**: 766–770.
- Fernandez, V. M., K. K. Rao, M. A. Fernandez, and R. Cammack. 1986. Activation and deactivation of the membrane-bound hydrogenase from *Desulfovibrio desulfuricans*, Norway strain. *Biochimie* 68: 43–48.
- Cammack, R., V. M. Fernandez, and K. Schneider. 1986. Activation and active sites of nickel-containing hydrogenases. *Biochimie* 68: 85–91.