Deregulation of Aspartokinase by Single Nucleotide Exchange Leads to Global Flux Rearrangement in the Central Metabolism of Corynebacterium glutamicum

  • Published : 2006.08.01

Abstract

The wild-type Corynebacterium glutamicum ATIC 13032 and Corynebacterium glutamicum ATTC 13032 lysC S301Y, exhibiting a deregulated aspartokinase, were compared concerning growth, lysine production, and intracellular carbon fluxes. Both strains differ by only one single nucleotide over the whole genome. In comparison to the wild-type, the mutant showed significant production of lysine with a molar yield of 0.087 mol (mol glucose$^{-1}$) whereas the biomass yield was reduced. The deregulation of aspartokinase further led to a global rearrangement of carbon flux throughout the whole central metabolism. This involved an increased flux through the pentose phosphate pathway (PPP) and an increased flux through anaplerosis. Because of this, the mutant revealed an enhanced supply of NADPH and oxaloacetate required for lysine biosynthesis. Additionally, the lumped flux through phosphoenolpyruvate carboxykinase and malic enzyme, withdrawing oxaloacetate back to the glycolysis and therefore detrimental for lysine production, was increased. The reason for this might be a contribution of malic enzyme to NADPH supply in the mutant in the mutant. The observed complex changes are remarkable, because they are due to the minimum genetic modification possible, the exchange of only one single nucleotide.

Keywords

References

  1. Bailey, J. E. 1999. Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616-618 https://doi.org/10.1038/10794
  2. Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6 bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596 https://doi.org/10.1128/AEM.71.12.8587-8596.2005
  3. Cremer, J., L. Eggeling, and H. Sahm. 1991. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl. Environ. Microbiol. 57: 1746-1752
  4. Dominguez, H., C. Rollin, A. Guyonvarch, J. L. GuerquinKern, M. Cocaign-Bousquet, and N. D. Lindley. 1998. Carbon-flux distribution in the central metabolicl pathways of Corynebacterium glutamicum during growth on fructose. Eur. J. Biochem. 254: 96-102 https://doi.org/10.1046/j.1432-1327.1998.2540096.x
  5. Jetten, M. S. and A. J. Sinskey. 1995. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15: 73-103 https://doi.org/10.3109/07388559509150532
  6. Kalinowski, J., J. Cremer, B. Bachmann, L. Eggeling, H. Sahm, and A. Puhler. 1991. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol. Microbiol. 5: 1197-1204 https://doi.org/10.1111/j.1365-2958.1991.tb01893.x
  7. Kiefer, P., E. Heinzle, O. Zelder, and C. Wittmann. 2004. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl. Environ. Microbiol. 70: 229-239 https://doi.org/10.1128/AEM.70.1.229-239.2004
  8. Kromer, J. O., M. Fritz, E. Heinzle, and C. Wittmann. 2005. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal. Biochem. 340: 171-173 https://doi.org/10.1016/j.ab.2005.01.027
  9. Moritz, B., K. Striegel, A. A. De Graaf, and H. Sahm. 2000. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267: 3442-3452 https://doi.org/10.1046/j.1432-1327.2000.01354.x
  10. Nakayama, K., H. Tanaka, H. Hagino, and S. Kinoshita. 1966. Studies on lysine fermentation. V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Microoccus glutamicus. Agric. Biol. Chem. 30: 611-616 https://doi.org/10.1271/bbb1961.30.611
  11. Ogawa-Miyata, Y., H. Kojima, and K. Sano. 2001. Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K -12 and its use in $_L$-threonine production. Biosci. Biotechnol. Biochem. 65: 1149-1154 https://doi.org/10.1271/bbb.65.1149
  12. Petersen, S., A. A. de Graaf, L. Eggeling, M. Mollney, W. Wiechert, and H. Sahm. 2000. In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J. BioI. Chem. 275: 35932-35941 https://doi.org/10.1074/jbc.M908728199
  13. Pfefferle, W., B. Mockel, B. Bathe, and A. Marx. 2003. Biotechnological manufacture of lysine. Adv. Biochem. Eng. Biotechnol. 79: 59-112 https://doi.org/10.1007/3-540-45989-8_3
  14. Sahm, H., L. Eggeling, and A. A. de Graaf. 2000. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol. Chem. 381: 899-910 https://doi.org/10.1515/BC.2000.111
  15. Shiio, I. and R. Miyajima. 1969. Concerted inhibition and its reversal of aspartate kinase in Brevibacterium flavum. J. Biochem. 65: 849-859 https://doi.org/10.1093/oxfordjournals.jbchem.a129089
  16. Shiio, I., R. Miyajima, and K. Sano. 1970. Genetically desensitized aspartate kinase to the concerted feedback inhibition in Brevibacterium flavum. J. Biochem. (Tokyo) 68: 701-710 https://doi.org/10.1093/oxfordjournals.jbchem.a129403
  17. Sugimoto, M., A. Tanaka, T. Suzuki, H. Matsui, S. Nakamori, and H. Takagi. 1997. Sequence analysis of functional regions of homoserine dehydrogenase genes from L-lysine and L-threonine-producing mutants of Brevibacterium lactcfermentum. Biosci. Biotechnol. Biochem. 61: 1760-1762 https://doi.org/10.1271/bbb.61.1760
  18. Vallino, J. J. and G. Stephanopoulos. 2000. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Reprinted from Biotechnology and Bioengineering, Vol. 41, pp. 633-646 (1993). Biotechnol. Bioeng. 67: 872-885
  19. Wittmann, C. and A. de Graaf. 2005. Metabolic Flux Analysis in Corynebacterium glutamicum, pp. 277-304. In L. Eggeling and M. Bott (eds.). Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton
  20. Wittmann, C. and E. Heinzle. 2001. Application of MALDITOF MS to lysine-producing Corynebacterium glutamicum: A novel approach for metabolic flux analysis. Eur. J. Biochem. 268: 2441-2455 https://doi.org/10.1046/j.1432-1327.2001.02129.x
  21. Wittmann, C. and E. Heinzle. 2002. Genealogy profiling through strain improvement by using metabolic network analysis: Metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl. Environ. Microbiol. 68: 5843-5859 https://doi.org/10.1128/AEM.68.12.5843-5859.2002
  22. Wittmann, C., P. Kiefer, and O. Zelder. 2004. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287 https://doi.org/10.1128/AEM.70.12.7277-7287.2004
  23. Wittmann, C., H. M. Kim, and E. Heinzle. 2004. Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol. Bioeng. 87: 1-6 https://doi.org/10.1002/bit.20103