수술 전 폐혈관 유순도가 심장 외 도판을 이용한 Fontan 수술 후 늑막 삼출 기간에 미치는 영향

Impact of Pulmonary Vascular Compliance on the Duration of Pleural Effusion Duration after Extracardiac Fontan Procedure

  • 윤태진 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 임유미 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 송광재 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 정성호 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 박정준 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 서동만 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 이무송 (울산대학교 의과대학 예방의학교실)
  • Yun Tae-Jin (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Im Yu-Mi (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Song Kwang-Jae (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Jung Sung-Ho (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Park Jeong-Jun (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Seo Dong-Man (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Lee Moo-Song (Department of Preventive Medicine, College of Medicine, University of Ulsan)
  • 발행 : 2006.08.01

초록

배경 : 단심실 교정을 시행함에 있어 수술 전 위험 인자가 많지 않다고 판단되는 경우에도 수술 후 장기간의 흉관 배액, 단백 소모성 장질환, 폐혈관 색전증, 사망 등의 불량한 결과를 얻을 수 있다. 이러한 측면에서, 단심실 교정에 대한 기존의 위험 인자 분석은 수술 결과를 예측함에 있어 미흡한 점이 있다고 할 수 있다. 저자 등은 폐혈관 유순도를 새로이 정의하고, 낮은 폐혈관 유순도가 수술 후 흉관 배액 기간을 길게 한다는 가설을 세워 이를 증명하고자 하였다. 대상 및 방법 : 2002년 1월부터 2005년 5월까지 심장 외 도관을 이용한 단심실 교정을 받은 총 96 명의 환자들의 기록을 후행적으로 분석하였다. 동 기간 중 기존의 단심실 교정을 심장 외 도관으로 교체한 경우는 연구 대상에서 제외하였다. 수술 후 늑막 삼출 기간의 위험 인자 분석에는 12가지 수술 전 위험 인자들을 지수화한 Fontan risk score (FRS) 및 기타 다양한 수술 전, 수술 중 위험 인자들을 포함시켰으며, 본 연구를 위하여 전기로 analogue를 폐순환에 적용하여 계산된 폐혈관 유순도 (pulmonary vascular compliance, PVC, $mm^2/mmHg/m^2)$를 위험인자로 추가하였다. 전기 회로 analogue에 의하면 PVC는 폐동맥 지수 (pulmonary artery index, $mm^2/m^2$)를 총폐저항 (total pulmonary resistance, Wood $Unit{\cdot}m^2$) 및 폐 혈류량 (pulmonary blood flow, $L/min/m^2$) 으로 나눈 값으로 정의되며, 이는 폐혈관의 크기와 저항, 폐 혈류량 등을 동시에 고려하는 변수라고 할 수 있다. 결과 변수인 흉관 거치 기간은 자연로그를 취해 정규 분포화하고 이를 log indwelling time (LIT)으로 정의하였으며, 분석 대상 위험 인자들과 LIT 의 관계에 대한 다중 선형 회귀분석을 시행하였다. 결과 : 조기 사망은 없었고 만기 사망은 4 명 (4.2%)이었으며, 단심실 교정시 fenestration이 추가된 경우는 1예 있었다(1 %). 수술 전 PVC, 흉관 거치 기간, LIT는 각각 ${6{\sim}94.8\;mm^2/mmHg/m^2}$ (중간값:24.8), $3{\sim}268$일 ( 간값 : 20 일 ), $1.1{\sim}5.6$ ( 평균: 2.9, 표준 편차: 0.8) 이었다. 단변 수 분석상 FRS, PVC, 체외 순환시간 (CPB) 및 술 후 12 시간째의 중심 정맥압 등이 LIT와 연관되었으나, 다변수 분석상 PVC (p=0.0018) 및 CPB (p=0.0024)만이 독립적으로 LIT를 예측하였다. 두 변수는 LIT 변이에 대하여 21.7%의 설명력이 있었으며, 두 변수를 이용한 회귀 분석식은 다음과 같았다. LIT=2.74-0.0158 PVC+0.00658 CPB. 결론: 새로이 정의된 폐혈관 유순도는 심장 외 도관을 이용한 단심실 교정 후의 흉관 거치 기간을 결정하는 중요한 예측 인자로서, 수술 전 위험 인자 분석에 유용하게 사용될 수 있다.

Background: Preoperative risk analysis for Fontan candidates is still less than optimal in that patients with apparently low risks may have poor surgical outcome; prolonged pleural drainage, protein losing enteropathy, pulmonary thromboembolism and death. We hypothesized that low pulmonary vascular compliance (PVC) is a risk factor for prolonged pleural effusion drainage after the Fontan operation. Material and Method: A retrospective review of 96 consecutive patients who underwent the Extracardiac Fontan procedures (median age: 3.9 years) was performed. Fontan risk score (FRS) was calculated from 12 categorized preoperative anatomic and physiologic variables. PVC $(mm^2/m^2{\cdot}mmHg)$ was defined as pulmonary artery index $(mm^2/m^2)$ divided by total pulmonary resistance $(W.U{\cdot}/m^2)$ and pulmonary blood flow $(L/min/m^2)$ based on the electrical circuit analogue of the pulmonary circulation. Chest tube indwelling time was log-transformed (log indwelling time, LIT) to fit normal distribution, and the relationship between preoperative predictors and LIT was analyzed by multiple linear regression. Result: Preoperative PVC, chest tube indwelling time and LIT ranged from 6 to 94.8 $mm^2/mmHg/m^2$ (median: 24.8), 3 to 268 days (median: 20 days), and 1.1 to 5.6 (mean: 2.9, standard deviation: 0.8), respectively. FRS, PVC, cardiopulmonary bypass time (CPB) and central venous pressure at postoperative 12 hours were correlated with LIT by univariable analyses. By multiple linear regression, PVC (p=0.0018) and CPB (p=0.0024) independently predicted LIT, explaining 21.7% of the variation. The regression equation was LIT=2.74-0.0158 PVC+0.00658 CPB. Conclusion: Low pulmonary vascular compliance is an important risk factor for prolonged pleural effusion drainage after the extracardiac Fontan procedure.

키워드

참고문헌

  1. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8 https://doi.org/10.1136/thx.26.3.240
  2. Fisher DJ, Geva T, Felters TF, et al. Lifelong management of patients with a single functional ventricle: a protocol. Tex Heart Inst J 1995;22:284-95
  3. Senzaki H, Isoda T, Ishzawa A, Hishi T. Reconsideration of criteria for the fontan operation: influence of pulmonary artery size on postoperative hemodynamics of the Fontan operation. Circulation 1994;89:1196-202 https://doi.org/10.1161/01.CIR.89.3.1196
  4. Mitchell MB, Campbell DN, Ivy D, et al. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J Thorac Cardiovasc Surg 2004; 128:693-702 https://doi.org/10.1016/j.jtcvs.2004.07.013
  5. Fontan F, Fernandez G, Costa F, et al. The size of the pulmonary arteries and the results of the Fontan operation. J Thorac Cardiovasc Surg 1989;98:711-24
  6. Bridges ND, Farrell Jr PE, Pigott III JD, Norwood WI, Chin AJ. Pulmonary artery index: a nonpredictor of operative survival in patients undergoing modified Fontan repair. Circulation 1989;80(suppl I):I216-21
  7. Girod DA, Rice MJ, Mair DD, Julsrud PR, Puga FJ, Danielson GK. Relationship of pulmonary artery size to mortality in patients undergoing the Fontan operation. Circulation 1985;(suppl II):II93-6
  8. Reuben SR. Compliance of the human pulmonary arterial system in disease. Circ Res 1971;29:40-50 https://doi.org/10.1161/01.RES.29.1.40
  9. Senzaki H, Kato H, Akagi M, Hishi T. New criteria for the radical repair of congenital heart disease with pulmonary hypertension: in oder to avoid postoperative residual pulmonary hypertension. Jpn Hearrt H 1995;36:49-59 https://doi.org/10.1536/ihj.36.49
  10. Basnet NB, Awa S, Hishi T, Yanagisawa M. Pulmonary arterial compliance in children with atrial and ventricular septal defect. Heart Vessels 2000;15:61-9 https://doi.org/10.1007/s003800070033
  11. Brown KA, Ditchey RV. Human right ventricular end-systolic pressure-volume relation defined by maximal elastance. Circulation 1988;78:81-91 https://doi.org/10.1161/01.CIR.78.1.81
  12. Chemla D, Hebert JL, Coirault C, Salmeron S, Zamani K, Lecarpentier Y. Matching dicrotic notch and mean pulmonary artery pressures: implications for effective arterial elastance. Am J Physiol 1996:271:H1287-95
  13. Weinberg CE, Hertzberg JR, Ivy D, et al. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurement in children with pulmonary hypertension: a new method for evaluating reactivity-in vitro and clinical studies. Circulation 2004;110:2609-17 https://doi.org/10.1161/01.CIR.0000146818.60588.40
  14. Deswysen B, Charlier AA, Gevers M. Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med & Biol Eng 1980;18:153-66 https://doi.org/10.1007/BF02443290
  15. Huez S, Brimioulle S, Naeije R, Vachiery JL. Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension. Chest 2004;125:1211-28
  16. De Zelicourt DA, Pekkan K, Willis L, et al. In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Ann Thorac Surg 2005;79:2094-102 https://doi.org/10.1016/j.athoracsur.2004.12.052
  17. Reddy VM, Petrossian E, McElhinney DB, Moore P, Teitel DF, Hanley FL. One-stage complete unifocalization in infancts: when should the ventricular septal defect be closed? J Thorac Cardiovasc Surg 1997;113:858-68 https://doi.org/10.1016/S0022-5223(97)70258-7
  18. Kitagawa T, Hori T, Chikugo F, et al. Direct intraoperative measurements of aortic and pulmonary blood flows in patients with severe pulmonary artery hypertension. J Cardiovasc Surg 2000;41:683-9
  19. Gupta A, Dagger C, Behera S, Ferraro M, Wells W, Starnes V. Risk factors for persistent pleural effusions after the extracardiac Fontan procedure. J Thorac Cardiovasc Surg 2004; 127:1664-9 https://doi.org/10.1016/j.jtcvs.2003.09.011
  20. Chowdhury UK, Airan B, Kothari SS, et al. Specific issues after extracardiac Fontan operation: ventricular function, growth potential, arrhythmia, and thromboembolism. Ann Thorac Surg 2005;80:665-72 https://doi.org/10.1016/j.athoracsur.2005.02.024
  21. Ovroutski S, Alexi-Meskishvili V, Ewert P, Nurnberg JH, Hetzer R, Lange PE. Early and medium-term results after modified Fontan operation in adults. Eur J Cardiothorac Surg 2003;23:311-6 https://doi.org/10.1016/s1010-7940(02)00829-1
  22. Jacobs ML. The Fontan operation, thromboembolism and anticoagulation: a reappraisal of the single bullet theory. J Thorac Cardiovasc Surg 2005;129:491-5 https://doi.org/10.1016/j.jtcvs.2004.09.017
  23. Jacobs ML, Pourmoghadam KK, Geary EM, et al. Fontan's operation: is aspirin enough- is coumadin too much- Ann Thorac Surg 2002; 73:64-8 https://doi.org/10.1016/S0003-4975(01)03068-5
  24. Kaulitz R, Ziemer G, Rauch R, et al. Prophylaxis of thromboembolic complications after the Fontan operation (total cavopulmonary anastomosis). J Thorac Cardiovasc Surg 2005; 29:569-75
  25. Kavarana MN, Pegni S, Recto MR, et al. Seven-year clinical experience with the extracaridac pedicled pericardial Fontan operation. Ann Thorac Surg 2005;80:37-43 https://doi.org/10.1016/j.athoracsur.2005.01.038
  26. Mahnke CB, Boyle GJ, Janosky JE, Siewers RD, Pigula FA. Anticoagulation and incidence of late cerebrovascular accidents following the Fontan procedure. Pediatr Cardiol 2005; 26:56-61 https://doi.org/10.1007/s00246-003-0684-z
  27. Monagle P, Karl TR. Thromboembolic problems after the Fontan operation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2002;5:36-47 https://doi.org/10.1053/pcsu.2002.29716
  28. Uemura H, Yagihara T, Kawashima Y, et al. What factors affect ventricular performance after Fontan-type operation? J Thorac Cardiovasc Surg 1995;110:405-15 https://doi.org/10.1016/S0022-5223(95)70237-7
  29. Ghaferi AA, Hutchins GM. Progression of liver pathology in patients undergoing the Fontan procedure: chronic passive congestion, cardiac cirrhosis, hepatic adenoma, and hepatocellular carcinoma. J Thorac Cardiovasc Surg 2005;129: 1348-2 https://doi.org/10.1016/j.jtcvs.2004.10.005
  30. Shuichi S, Uemura H, Kagisaki K, Koh M, Yagihara T, Kitamura S. The off-pump procedure by simply cross-clamping the inferior caval vein. Ann Thorac Surg 2005;79:2083-8 https://doi.org/10.1016/j.athoracsur.2004.11.056