Effects of Isocitrate Lyase Inhibitors on Spore Germination and Appressorium Development in Magnaporthe grisea

  • Kim Seung-Young (School of Agricultural Biotechnology, Seoul National University) ;
  • Park Jin-Soo (School of Agricultural Biotechnology, Seoul National University) ;
  • Oh Ki-Bong (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2006.07.01

Abstract

The glyoxylate cycle can conserve carbons and adequately supply tricarboxylic acid (TCA) cycle intermediates for biosynthesis when microorganisms grow on $C_{2}$ carbon sources. It has been reported that isocitrate lyase (ICL1), a key enzyme of the glyoxylate cycle, is highly induced when Magnaporthe grisea, the causal agent of rice blast, infects its host. Therefore, the glyoxylate cycle is considered as a new target for antifungal agents. A 1.6-kb DNA fragment encoding the ICL1 from M. grisea KJ201 was amplified by PCR, cloned into a vector providing His-tag at the N-terminus, expressed in Escherichia coli, and purified using Ni-NTA affinity chromatography. The molecular mass of the purified ICL1 was approximately 60 kDa, as determined by SDS-PAGE. The ICL1 inhibitory effects of TCA cycle intermediates and their analogs were investigated. Among them, 3-nitropropionate was found to be the strongest inhibitor with an $IC_{50}$ value of $11.0{\mu}g/ml$. 3-Nitropropionate inhibited the appressorium development in M. grisea at the ${\mu}M$ level, whereas conidia germination remained unaffected. This compound also inhibited the mycelial growth of the fungus on minimal medium containing acetate as a $C_{2}$ carbon source. These results suggest that ICL1 plays a crucial role in appressorium formation of M. grisea and is a new target for the control of phytopathogenic fungal infection.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. de Jong, J. C., B. J. McCormack, M. Smirnoff and N. J. Talbot. 1997. Glycerol generates tugor in rice blast. Nature 389: 244-245 https://doi.org/10.1038/38418
  3. Eckhard, T., F. Eilbert, O. Sterner, and H. Anke. 1997. Glisoprenin A, an inhibitor of the signal transduction pathway leading to appressorium formation in germinating conidia of Magnaporthe grisea on hydrophobic surfaces. FEMS Microbiol. Lett. 151: 219-224 https://doi.org/10.1111/j.1574-6968.1997.tb12573.x
  4. Eilbert, F., H. Anke, and O. Sterner. 2000. Neobulgarones A-F from cultures of Neobulgaria pura, new inhibitors of appressorium formation of Magnaporthe grisea. J. Antibiot. 53: 1123-1129 https://doi.org/10.7164/antibiotics.53.1123
  5. Gainey, L. D. S., I. F. Connerton, E. H. Lewis, G. Turner, and D. J. Balance. 1992. Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans (acuD) and Neurospora crassa (acu3). Curr. Genet. 21: 43-47 https://doi.org/10.1007/BF00318653
  6. Hautzel, R., H. Anke, and W. S. Sheldrick. 1990. Mycenon, a new metabolite from a Mycena species TA 87202 (Basidiomycetes) as an inhibitor of isocitrate lyase. J. Antibiot. 43: 1240-1244 https://doi.org/10.7164/antibiotics.43.1240
  7. Hong, K. H., K. H. Jang, J. C. Lee, S. H. Kim, M. K. Kim, I. Y. Lee, S. M. Kim, Y. H. Lim, and S. A. Kang. 2005. Bacterial $\beta$-glucan exhibits potent hypoglycemic activity via decrease of serum lipids and adiposity, and increase of UCP mRNA expression. J. Microbiol, Biotechnol. 15: 823-830
  8. Hwan, D., M. J. Anderson, D. W. Denning, and E. B. Bauer. 2004. Inference of Aspergillus fumigatus pathways by computational genome analysis: Tricarboxylic acid cycle (TCA) and glyoxylate shunt. J. Microbiol. Biotechnol. 14: 74-80
  9. Johanson, R. A., J. M. Hill, and B. A. McFadden. 1974. Isocitrate lyase from Neurospora crassa: I. Purification, kinetic mechanism, and interaction with inhibitors. Biochim. Biophys. Acta 364: 327 -340 https://doi.org/10.1016/0005-2744(74)90018-7
  10. Kang, S. G., S. K. Kang, D. Y. Lee, Y. H. Park, W. S. Hwang, and H. S. Yoo. 2004. Cloning, sequencing, and expression of cDNA encoding bovine prion protein. J. Microbiol. Biotechnol. 14: 417-421
  11. Kornberg, H. L. and H. A. Krebs. 1957. Synthesis of cell constituents from C$_2$-units by a modified tricarboxylic acid cycle. Nature 179: 988-991 https://doi.org/10.1038/179988a0
  12. Lee, C. H., B. J. Kim, G. J. Choi, K. Y. Cho, H. J. Yang, C. S. Shin, S. Y. Min, and Y. H. Lim. 2002. Streptomyces with antifungal activity against rice blast causing fungus, Magnaporthe grisea. J. Microbiol. Biotechnol. 12: 1026-1028
  13. Lee, S. C. and Y. H. Lee. 1998. Calcium/calmodulindependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8: 698-704
  14. Li,J. P., T. B. Liu, X. Y. Yu, and F. C. Yu. 2005. Representative appressorium stage cDNA library of Magnaporthe grisea. J. Zhejiang Univ. Sci. 6: 132-136
  15. Lim, H. K., S. U. Lee, S. I. Chung, K. H. Jung, and J. H. Seo. 2004. Induction of the T7 promoter using lactose for production of recombinant plasminogen kringle 1-3 in Escherichia coli. J. Microbiol. Biotechnol. 14: 225-230
  16. Lorenz, M. C. and G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 83-86 https://doi.org/10.1038/35083594
  17. McKinney, J. D., K. H. Bentrup, E. J. Muñoz-Elías, A. Miczak, B. Chen, W. T. Chan, D. Swenson, J. C. Sacchettini, W. R. Jacobs Jr., and D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735-738 https://doi.org/10.1038/35021074
  18. Mitsunori, N. and C. P. Selitrennikoff. 2002. A method to assay glyoxylate cycle inhibitors for antifungals. J. Antibiot. 55: 602-604 https://doi.org/10.7164/antibiotics.55.602
  19. Nakamura, K., Y. Amano, M. Nakadate, and M. Kagami. 1989. Purification and properties of isocitrate lyase from Candida brassicae E-17. J. Ferment. Bioeng. 67: 153-157 https://doi.org/10.1016/0922-338X(89)90113-X
  20. Reinscheid, D. J., B. J. Eikmanns, and H. Sahm. 1994. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J. Bacteriol. 176: 3474-3483 https://doi.org/10.1128/jb.176.12.3474-3483.1994
  21. Schloss, J. V. and W. W. Cleland. 1982. Inhibition of isocitrate lyase by 3-nitropropionate, a reaction-intermediate analogue. Biochemistry 21: 4420-4427 https://doi.org/10.1021/bi00261a035
  22. Schmidt, G., K. P. Stahmann, and H. Sahm. 1996. Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology 142: 411-417 https://doi.org/10.1099/13500872-142-2-411
  23. Soh, B. S., P. Loke, and T. S. Sim. 2001. Cloning, heterologous expression and purification of an isocitrate lyase from Streptomyces clavuligerus NRRL 3585. Biochim. Biophys. Acta 1522: 112-117 https://doi.org/10.1016/S0167-4781(01)00309-8
  24. Thines, E., R. W. Weber, and N. J. Talbot. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12: 1703-1718 https://doi.org/10.1105/tpc.12.9.1703
  25. Wang Z. Y, C. R. Thornton, M. J. Kershaw, L. Debao, and N. J. Talbot. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol. 47: 1601-1612 https://doi.org/10.1046/j.1365-2958.2003.03412.x
  26. Wang, Z. Y, J. M. Jenkinson, L. J. Holcombe, D. M. Soanes, C. Veneault-Fourrey, G. K. Bhambra, and N. J. Talbot. 2005. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem. Soc. Trans. 33: 384-388 https://doi.org/10.1042/BST0330384