참고문헌
- Adjei, M. D. and Y. Ohta. 2000. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C3. J. Biosci. Bioeng. 89: 274-277 https://doi.org/10.1016/S1389-1723(00)88833-7
- Ausubel, F. M., R. E. Brent, R. E. Kingston, D. D. Moore, J. A. Seidman, J. A. Smith, and K. Struhi. 1987. Current Protocols in Molecular Biology. Greene Publishing Associates, New York, NY
- Arutchelvan, A., V. Kanakasabai, S. Nagarajan, and V. Muralikrishnan. 2005. Isolation and identification of novel high strength phenol degrading bacterial strains from phenolformaldehyde resin manufacturing industrial wastewater. J. Hazard. Mat. B27: 238-243
- Bodzek, M., J. Bohdziewicz, and M. Kowalska. 1996. Immobilized enzyme membranes for phenol and cyanide decomposition. J. Memb. Sci. 113: 373-384 https://doi.org/10.1016/0376-7388(95)00299-5
- Brenner, V, B. S. Hernandez, and D. D. Focht. 1993. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations. Appl. Environ. Microbiol. 59: 2790-2794
- Carlton, B. C. and B. J. Boown. 1981. Gene mutation, pp. 222-242. In P. Gerhardt (ed.), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C
- Chakrabarty, A. M. 1976. Plasmids in Pseudomonas. Annu. Rev. Genet. 10: 7-30 https://doi.org/10.1146/annurev.ge.10.120176.000255
- Chena, S. C. and J. K. liu. 1999. The responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol. Lett. 175: 37-43 https://doi.org/10.1111/j.1574-6968.1999.tb13599.x
- Chiang, K., R. Amal, and T. Tran. 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copperoxide. Adv. Environ. Res. 6: 471-485 https://doi.org/10.1016/S1093-0191(01)00074-0
- Dorn, E. and H. J. Knaekmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. J. Biochem. 174: 85-94 https://doi.org/10.1042/bj1740085
- Fedorak, P. M., D. J. Roberts, and S. E. Hurdey. 1986. The effects of cyanide on the methanogenic degradation of phenolic compounds. Water Res. 20: 1315-1320 https://doi.org/10.1016/0043-1354(86)90163-6
- Finnegan, I., S. Toerien, L. Abbot, F. Smit, and H. G. Raubenheimer. 1991. Identification and characterization of a Acinetobacter sp. capable of assimilation of a range of cyanometal complexes, free cyanide ions and simple organic nitriles. Appl. Microbiol. Biotechnol. 36: 142-144 https://doi.org/10.1007/BF00164715
- Fisher, F. B. and J. S. Brown. 1952. Colorimetric determination of cyanide in stack gas and water. Anal. Chem. 24: 1440-1444 https://doi.org/10.1021/ac60069a014
- Folsom, B. R., P. J. Chapman, and R. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia 4: Kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279-1285
- Fujita, M., M. Ike, and H. Kamiya. 1993. Accelerated phenol removal by amplifying the gene expression with a recombinant plasmid encoding catechol-2,3-oxygenase. Water Res. 27: 9-13 https://doi.org/10.1016/0043-1354(93)90189-O
- Hansen, J. B. and R. Olsen. 1978. Isolation of large bacterial plasmid and characterization of the p2 incompatibility group plasmids pMG1 and pMG2. J. Bacteriol. 135: 227-238
- Harris, R. E. and C. J. Knowles. 1989. Isolation and growth of Pseudomonas species that utilize cyanide as a source of nitrogen. J. Gen. Microbiol. 129: 1005-1011
- Heinaru, E., J. Truu, U. Stotrneister, and A. Heinaru. 2000. Three types of phenol and p-cresol catabolism in phenoland p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol. Ecol. 31: 195-205 https://doi.org/10.1111/j.1574-6941.2000.tb00684.x
- Hill, G. A. and C. W. Robinson. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol. Bioeng.17: 1599-1615 https://doi.org/10.1002/bit.260171105
- Hinteregger, C., R. M. Leitner, A. Loid, A. Freshl, and F. Streichsbier. 1992. Degradation of phenol and phenolic compounds by Pseudomonas putida EKH. Appl. Microbiol. Biotechnol. 37: 252-259
- Ingvorsen, K., B. Hojer-Pedersen, and S. E. Godtfredsen. 1991. Novel cyanide hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificants. Appl. Environ. Microbiol. 57: 1783-1789
- Kado, C. I. and S. J. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373
- Kang, S. M. and S. J. Kim. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanidedegrading bacteria. Biotechnol. Lett. 15: 201-206 https://doi.org/10.1007/BF00133024
- Kang, M. H. and J. M. Park. 1997. Sequential degradation of phenol and cyanide by a commensal interaction between two microorganisms. J. Chem. Technol. Biotechnol. 69: 226-230 https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<226::AID-JCTB677>3.0.CO;2-N
- Kao, C. M., J. K. Liu, H. R. Lou, C. S. Lin, and S. C. Chen. 2003. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50: 1055-1061 https://doi.org/10.1016/S0045-6535(02)00624-0
- Karns, J. S. 1990. Molecular genetics of pesticide degradation by soil bacteria. ACS Symposium Series 426: 141-152
- Kivisaar, A. M., K. J. Habicht, and L. A. Heinaru. 1989. Degradation of phenol and m-toluate in Pseudomonas sp. strain ES1001 and its Pseudomonas putida transconjugants is determined by a multiplasmids system. J. Bacteriol. 171: 5111-5116 https://doi.org/10.1128/jb.171.9.5111-5116.1989
- Knowles, C. J. and A. W. Bunch. 1986. Microbial cyanide metabolism. Adv. Microb. Physiol. 27: 73-111 https://doi.org/10.1016/S0065-2911(08)60304-5
- Lin, C. S. and C. I. Kado. 1977. Studies on Agrobacterium tumefaciens. VII. A virulence induced by temperature and ethidium bromide. Can. J. Microbiol. 23: 1554-1561 https://doi.org/10.1139/m77-229
- Luque-Almagro, V. M., M. J. Huertas, M. Martinez-Laque, C. Moreno-Vivian, M. R. Roldan, L. J. Garcia-Gil, F. Gastillo, and R. Blasco. 2005. Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl. Environ. Microbiol. 71: 940-947 https://doi.org/10.1128/AEM.71.2.940-947.2005
- Mishra, V., R. Lal, and S. Srinivasan. 2001. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 27: 133-166 https://doi.org/10.1080/20014091096729
- Myers, P. R., P. Gokool, D. E. Rawlings, and D. R. Woods. 1992. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137: 1397-1400
- Palleroni, N. J. 1984. Gram-negative aerobic rods and cocci, family 1 Pseudomonadaceae, pp. 144-199. In Krieg, N. R. and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, London
- Parkin, G. F. and R. E. Speece. 1983. Attached versus suspended growth anaerobic reactors: Response to toxic substances. Water Sci. Technol. 15: 261-289
- Peters, M., E. Heinaru, E. Talpsep, H. Ward, U. Stottmeister, A. Heinaru, and A. Nurk. 1997. Acquisition of a deliberately introduced phenol degradation operon, pheAB, by different indigenous Pseudomonas species. Appl. Environ. Microbiol. 63: 4899-4906
- Powlowski, J. and V. Shingler. 1994. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5: 219-236 https://doi.org/10.1007/BF00696461
- Qureshi, A., S. K. Prabu, and H. J. Purohit. 2001. Isolation and characterization of Pseudomonas strain for degradation of 4-nitrophenol. Microb. Environ. 16: 49-52 https://doi.org/10.1264/jsme2.2001.49
- Santos, V. L. and V. R. Linardi. 2004. Biodegradation of phenol by filamentous fungi isolated from industrial effluentsidentification and degradation potential. Proc. Biochem. 39: 1001-1006
- Shivararnan, N. and N. M. Parhad. 1985. Degradation of cyanide by a bacterial mixture composed of new types of cyanide-degrading bacteria. Indian J. Microbiol. 25: 79-82
- Kang, S. M. and D. J. Kim. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanide-degrading bacteria. Biotechnol. Lett. 15: 201-206 https://doi.org/10.1007/BF00133024
- Skowronski, B. and G. A. Strobel. 1969. Cyanide resistance and cyanide utilization by a strain of Bacillus pumulis. Can. J. Microbiol. 15: 93 -98 https://doi.org/10.1139/m69-014
- Stephen, T. L. T., Y. P. M. Benjamin, M. M. Abudi, and H. T. Joo. 2005. Comparing activated sludge and aerobic granules as microbial inocula for phenol degradation. Appl. Microbiol. Biotechnol.67: 708-713 https://doi.org/10.1007/s00253-004-1858-1
- Watanabe, A., K. Yano, K. Ikebukuro, and I. Karube. 1998. Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61. Appl. Microbiol. Biotechnol. 50: 93-97 https://doi.org/10.1007/s002530051261
- White, J. M., D. D. Jones, D. Hung, and J. J. Gauthier. 1988. Conversion of cyanide to formate and ammonia by Pseudomonas from industrial wastewater. J. Ind. Microbiol. 3:263-272 https://doi.org/10.1007/BF01569526
- Yanase, H., A. Sakamoto, K. Okamoto, K. Kita, and Y. Sato. 2000. Degradation of the metal-cyano complex tetracyanonikelate (II) by Fusarium oxysporium N-10. Appl. Microbiol. Biotechnol. 53: 328-334 https://doi.org/10.1007/s002530050029