Plasmid- and Chromosome-Mediated Assimilation of Phenol and Cyanide in Pseudomonas sp. Strain PhCN

  • El-Deeb Bahig A. (Botany Department, Genetic Laboratory, Faculty of Science, South Valley University)
  • Published : 2006.07.01

Abstract

Pseudomonas sp. PhCN strain, which has the potential to utilize phenol and cyanide as a sole carbon and nitrogen source, was isolated. A comparison of the effect of cyanide on phenol degradation and vice versa by strain PhCN showed that the degradation time was significantly delayed by an increase in either phenol or cyanide concentration, and the greatest activities were obtained in basal medium containing a low concentration of cyanide and phenol. This strain contained two plasmids of approximately 120 kb (pPhCN-1) and 110 kb (pPhCN-2). Plasmid curing experiments produced a plasmid-free strain as well as strains containing either the 120- or the 110 kb plasmid. The strains were tested for their ability to utilize phenol and KCN. The results demonstrated that the ability to utilize phenol was encoded by the 120 kb plasmid, whereas the ability to utilize cyanide appeared to be encoded by the chromosome.

Keywords

References

  1. Adjei, M. D. and Y. Ohta. 2000. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C3. J. Biosci. Bioeng. 89: 274-277 https://doi.org/10.1016/S1389-1723(00)88833-7
  2. Ausubel, F. M., R. E. Brent, R. E. Kingston, D. D. Moore, J. A. Seidman, J. A. Smith, and K. Struhi. 1987. Current Protocols in Molecular Biology. Greene Publishing Associates, New York, NY
  3. Arutchelvan, A., V. Kanakasabai, S. Nagarajan, and V. Muralikrishnan. 2005. Isolation and identification of novel high strength phenol degrading bacterial strains from phenolformaldehyde resin manufacturing industrial wastewater. J. Hazard. Mat. B27: 238-243
  4. Bodzek, M., J. Bohdziewicz, and M. Kowalska. 1996. Immobilized enzyme membranes for phenol and cyanide decomposition. J. Memb. Sci. 113: 373-384 https://doi.org/10.1016/0376-7388(95)00299-5
  5. Brenner, V, B. S. Hernandez, and D. D. Focht. 1993. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations. Appl. Environ. Microbiol. 59: 2790-2794
  6. Carlton, B. C. and B. J. Boown. 1981. Gene mutation, pp. 222-242. In P. Gerhardt (ed.), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C
  7. Chakrabarty, A. M. 1976. Plasmids in Pseudomonas. Annu. Rev. Genet. 10: 7-30 https://doi.org/10.1146/annurev.ge.10.120176.000255
  8. Chena, S. C. and J. K. liu. 1999. The responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol. Lett. 175: 37-43 https://doi.org/10.1111/j.1574-6968.1999.tb13599.x
  9. Chiang, K., R. Amal, and T. Tran. 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copperoxide. Adv. Environ. Res. 6: 471-485 https://doi.org/10.1016/S1093-0191(01)00074-0
  10. Dorn, E. and H. J. Knaekmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. J. Biochem. 174: 85-94 https://doi.org/10.1042/bj1740085
  11. Fedorak, P. M., D. J. Roberts, and S. E. Hurdey. 1986. The effects of cyanide on the methanogenic degradation of phenolic compounds. Water Res. 20: 1315-1320 https://doi.org/10.1016/0043-1354(86)90163-6
  12. Finnegan, I., S. Toerien, L. Abbot, F. Smit, and H. G. Raubenheimer. 1991. Identification and characterization of a Acinetobacter sp. capable of assimilation of a range of cyanometal complexes, free cyanide ions and simple organic nitriles. Appl. Microbiol. Biotechnol. 36: 142-144 https://doi.org/10.1007/BF00164715
  13. Fisher, F. B. and J. S. Brown. 1952. Colorimetric determination of cyanide in stack gas and water. Anal. Chem. 24: 1440-1444 https://doi.org/10.1021/ac60069a014
  14. Folsom, B. R., P. J. Chapman, and R. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia 4: Kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279-1285
  15. Fujita, M., M. Ike, and H. Kamiya. 1993. Accelerated phenol removal by amplifying the gene expression with a recombinant plasmid encoding catechol-2,3-oxygenase. Water Res. 27: 9-13 https://doi.org/10.1016/0043-1354(93)90189-O
  16. Hansen, J. B. and R. Olsen. 1978. Isolation of large bacterial plasmid and characterization of the p2 incompatibility group plasmids pMG1 and pMG2. J. Bacteriol. 135: 227-238
  17. Harris, R. E. and C. J. Knowles. 1989. Isolation and growth of Pseudomonas species that utilize cyanide as a source of nitrogen. J. Gen. Microbiol. 129: 1005-1011
  18. Heinaru, E., J. Truu, U. Stotrneister, and A. Heinaru. 2000. Three types of phenol and p-cresol catabolism in phenoland p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol. Ecol. 31: 195-205 https://doi.org/10.1111/j.1574-6941.2000.tb00684.x
  19. Hill, G. A. and C. W. Robinson. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol. Bioeng.17: 1599-1615 https://doi.org/10.1002/bit.260171105
  20. Hinteregger, C., R. M. Leitner, A. Loid, A. Freshl, and F. Streichsbier. 1992. Degradation of phenol and phenolic compounds by Pseudomonas putida EKH. Appl. Microbiol. Biotechnol. 37: 252-259
  21. Ingvorsen, K., B. Hojer-Pedersen, and S. E. Godtfredsen. 1991. Novel cyanide hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificants. Appl. Environ. Microbiol. 57: 1783-1789
  22. Kado, C. I. and S. J. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373
  23. Kang, S. M. and S. J. Kim. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanidedegrading bacteria. Biotechnol. Lett. 15: 201-206 https://doi.org/10.1007/BF00133024
  24. Kang, M. H. and J. M. Park. 1997. Sequential degradation of phenol and cyanide by a commensal interaction between two microorganisms. J. Chem. Technol. Biotechnol. 69: 226-230 https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<226::AID-JCTB677>3.0.CO;2-N
  25. Kao, C. M., J. K. Liu, H. R. Lou, C. S. Lin, and S. C. Chen. 2003. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50: 1055-1061 https://doi.org/10.1016/S0045-6535(02)00624-0
  26. Karns, J. S. 1990. Molecular genetics of pesticide degradation by soil bacteria. ACS Symposium Series 426: 141-152
  27. Kivisaar, A. M., K. J. Habicht, and L. A. Heinaru. 1989. Degradation of phenol and m-toluate in Pseudomonas sp. strain ES1001 and its Pseudomonas putida transconjugants is determined by a multiplasmids system. J. Bacteriol. 171: 5111-5116 https://doi.org/10.1128/jb.171.9.5111-5116.1989
  28. Knowles, C. J. and A. W. Bunch. 1986. Microbial cyanide metabolism. Adv. Microb. Physiol. 27: 73-111 https://doi.org/10.1016/S0065-2911(08)60304-5
  29. Lin, C. S. and C. I. Kado. 1977. Studies on Agrobacterium tumefaciens. VII. A virulence induced by temperature and ethidium bromide. Can. J. Microbiol. 23: 1554-1561 https://doi.org/10.1139/m77-229
  30. Luque-Almagro, V. M., M. J. Huertas, M. Martinez-Laque, C. Moreno-Vivian, M. R. Roldan, L. J. Garcia-Gil, F. Gastillo, and R. Blasco. 2005. Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl. Environ. Microbiol. 71: 940-947 https://doi.org/10.1128/AEM.71.2.940-947.2005
  31. Mishra, V., R. Lal, and S. Srinivasan. 2001. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 27: 133-166 https://doi.org/10.1080/20014091096729
  32. Myers, P. R., P. Gokool, D. E. Rawlings, and D. R. Woods. 1992. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137: 1397-1400
  33. Palleroni, N. J. 1984. Gram-negative aerobic rods and cocci, family 1 Pseudomonadaceae, pp. 144-199. In Krieg, N. R. and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, London
  34. Parkin, G. F. and R. E. Speece. 1983. Attached versus suspended growth anaerobic reactors: Response to toxic substances. Water Sci. Technol. 15: 261-289
  35. Peters, M., E. Heinaru, E. Talpsep, H. Ward, U. Stottmeister, A. Heinaru, and A. Nurk. 1997. Acquisition of a deliberately introduced phenol degradation operon, pheAB, by different indigenous Pseudomonas species. Appl. Environ. Microbiol. 63: 4899-4906
  36. Powlowski, J. and V. Shingler. 1994. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5: 219-236 https://doi.org/10.1007/BF00696461
  37. Qureshi, A., S. K. Prabu, and H. J. Purohit. 2001. Isolation and characterization of Pseudomonas strain for degradation of 4-nitrophenol. Microb. Environ. 16: 49-52 https://doi.org/10.1264/jsme2.2001.49
  38. Santos, V. L. and V. R. Linardi. 2004. Biodegradation of phenol by filamentous fungi isolated from industrial effluentsidentification and degradation potential. Proc. Biochem. 39: 1001-1006
  39. Shivararnan, N. and N. M. Parhad. 1985. Degradation of cyanide by a bacterial mixture composed of new types of cyanide-degrading bacteria. Indian J. Microbiol. 25: 79-82
  40. Kang, S. M. and D. J. Kim. 1993. Degradation of cyanide by a bacterial mixture composed of new types of cyanide-degrading bacteria. Biotechnol. Lett. 15: 201-206 https://doi.org/10.1007/BF00133024
  41. Skowronski, B. and G. A. Strobel. 1969. Cyanide resistance and cyanide utilization by a strain of Bacillus pumulis. Can. J. Microbiol. 15: 93 -98 https://doi.org/10.1139/m69-014
  42. Stephen, T. L. T., Y. P. M. Benjamin, M. M. Abudi, and H. T. Joo. 2005. Comparing activated sludge and aerobic granules as microbial inocula for phenol degradation. Appl. Microbiol. Biotechnol.67: 708-713 https://doi.org/10.1007/s00253-004-1858-1
  43. Watanabe, A., K. Yano, K. Ikebukuro, and I. Karube. 1998. Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61. Appl. Microbiol. Biotechnol. 50: 93-97 https://doi.org/10.1007/s002530051261
  44. White, J. M., D. D. Jones, D. Hung, and J. J. Gauthier. 1988. Conversion of cyanide to formate and ammonia by Pseudomonas from industrial wastewater. J. Ind. Microbiol. 3:263-272 https://doi.org/10.1007/BF01569526
  45. Yanase, H., A. Sakamoto, K. Okamoto, K. Kita, and Y. Sato. 2000. Degradation of the metal-cyano complex tetracyanonikelate (II) by Fusarium oxysporium N-10. Appl. Microbiol. Biotechnol. 53: 328-334 https://doi.org/10.1007/s002530050029