Growth of Oxides Single Crystals by Hydrothermal Method

수열법에 의한 산화물 단결정 성장

  • Lee, Young-Kuk (Korea Research Institute of Chemical Technology Advanced Materials Division, Device Nanomaterials Center)
  • 이영국 (한국화학연구원 화학소재연구단 소자나노재료연구센터)
  • Published : 2006.12.31

Abstract

수열법으로 압전수정, 방해석 및 산화아연 단결정을 성장하고 각종 결함 및 성장된 단결정의 구조적, 화학적, 물리적 특성을 고찰하였다. 수열법은 직접 용융법으로 단결정을 성장할 수 없는 재료의 결정 성장에 많이 이용되며 수정의 경우, 융액의 점도가 매우 높고 유리화하는 성질이 있어 직접 용융으로 단결정을 성장할 수 없다. 방해석과 산화아연의 경우 용융하였을 때 분해되기 때문에 직접 용융법으로 단결정을 성장할 수 없어 수열법이 사용된다. 본 고찰에서는 수열법의 성장 원리와 성장 방법, 결함 검출 방법 및 물리적, 화학적 특성 측정 등을 다루었으며 또한 산업화 적용에 대하여 다루었다.

Keywords

References

  1. K. Byrappa, 'Hydrothermal Growth of Crystals', pp. 466-470 in Handbook of Crystal Growth, Ed. by D. T. J. Hirle, Elservier Science B. V., Amsterdam, Netherlands (1994)
  2. R. A. Laudise et al., 'High performance quartz', in Proc. of the 42nd Annual Freq. Cont. Symp., pp. 116-126 (1988)
  3. R. J. Baughman, J. Cryst. Growth, 112, 753-757 (1991) https://doi.org/10.1016/0022-0248(91)90132-O
  4. D. F. Croxall et al., 'Growth and characterization of high purity quartz', in Proc. of the 36th Annual Freq. Cont. Symp., pp. 62-65 (1982)
  5. M. T. Harris et al., 'Process of making high quality quartz single crystal using silica glass nutrient', U. S. Pat. 4,956,047, Sep. 11 (1990)
  6. A. F. Armington et al., 'The growth of high purity, low dislocation quartz', in Proc. of the 38th Annual Freq. Cont. Symp., pp. 3-7 (1984)
  7. H. G. Lipson and A. F. Armington, J. Cryst. Growth, 80, 51-59 (1987) https://doi.org/10.1016/0022-0248(87)90522-7
  8. A. F. Armington and J. J. Larkin, J. Cryst. Growth, 71, 799-802 (1985) https://doi.org/10.1016/0022-0248(85)90395-1
  9. J. F. Balascio and A. F. Armington, 'Developmental results for the production of high quality quartz', in Proc. of the 40th Annual Freq. Cont. Symp., pp. 70-75 (1986)
  10. G. R. Rossman, 'Colored Varieties of Silica Minerals', pp. 343-345 in Reviews in Mineralogy, Ed. by P. J. Heaney, C. T. Prewitt and G. V Gibbs Vol. 29, Mineralogical Society of America, Washington, D.C, USA (1994)
  11. J.F. Balascio and W.B. White, Mat. Res. Bull., 7, 1461-1472 (1972) https://doi.org/10.1016/0025-5408(72)90183-3
  12. D. R. Kinloch, R. F. Belt and R. C. Puttbach, J. Cryst. Growth, 24, 610-3 (1974) https://doi.org/10.1016/0022-0248(74)90388-1
  13. H. Hashimoto, F. Hayashi, S. Nakajima, T. Mizuno and T. Uematsu, J. of Cryst. Growth, 60, 159-162 (1982) https://doi.org/10.1016/0022-0248(82)90189-0
  14. H. Hashimoto, F. Hayashi, H. Kosuge and T. Uematsu, J. of Cryst. Growth, 60, 207-211 (1982) https://doi.org/10.1016/0022-0248(82)90090-2
  15. D. F. Croxall, R. C. C. Ward, C. A. Wallace and R. C. Kell, J. of Cryst. Growth, 22, 117-124 (1974) https://doi.org/10.1016/0022-0248(74)90128-6
  16. R. A. Laudise, E. D. Kolb and A. J. Caporaso, J. of Am. Ceram. Soc., 47(1), 9-12 (1964) https://doi.org/10.1111/j.1151-2916.1964.tb14632.x
  17. E. D. Kolb and R. A. Laudise, J. of Am. Ceram. Soc., 48(7), 342-345 (1965) https://doi.org/10.1111/j.1151-2916.1965.tb14757.x
  18. N. Sakagami, J. of Cryst. Growth, 99, 905-909 (1990) https://doi.org/10.1016/S0022-0248(08)80050-4
  19. R. A. Laudise and A. A. Ballman, J. of Am. Ceram. Soc., 64, 688-691 (1960)
  20. K. Matsumoto, J. of Cryst. Growth, 102, 137-140 (1990) https://doi.org/10.1016/0022-0248(90)90894-Q
  21. H. Iwanaga et al., J. of Cryst. Growth, 134, 275-280 (1993) https://doi.org/10.1016/0022-0248(93)90136-K
  22. N. Sakagami and K. Shimayama, Jpn. J. of App. Phys., 20, 201-205 (1981) https://doi.org/10.1143/JJAP.20.L201
  23. E. U. Franck, Phys. Chem. Earth, 13&14, 65 (1981)
  24. Handbook of Physics and Chemistry, 64th Ed., Ed. by R.C. Weast, CRC Press Boca Raton, D261 (1983)
  25. J. B. Hasted, D. M. Ritson and C. H. Collie, J. Chem. Phys., 16, 1 (1948) https://doi.org/10.1063/1.1746645
  26. M. Uematsu, W. Harder and E. U. Franck, 'The Dielectric Constant of Water', Technical Paper p.38 (WLKg. Gp. 3), Int. Assoc. for Prop. of Stern. Inter. Mtg. Kyoto Mtg. Japan (1976)
  27. Landolt-Bornstein, 'Numerical Data and Functional Relationships, Gr. IV, Vol.4, p.91 High Pressure Properties of Matter, eds. G Beggerow and K. L. Schafer, Springer, Berlin (1980)
  28. C. Klein and C. S. Hurlbut; Manual of Mineralogy, 21st edn., p. 527: John Wiely & Sons (1993)
  29. P. J. Heaney, 'Low Pressure Silica Polymorphs', pp.7-14 in Reviews in Mineralogy, Ed. by P. J. Heaney, C. T. Prewitt and G. V. Gibbs Vol. 29, Mineralogical Society of America, Washington, D.C, USA (1994)
  30. A. F. Wright and M. S. Lehmann, J. Sol. State Chem., 36, 371-380 (1981) https://doi.org/10.1016/0022-4596(81)90449-7
  31. G. Will, M. Bellotto, W. Parrish and M. Hart, J. Appl. Cryst., 21, 182-191 (1988) https://doi.org/10.1107/S0021889887011567
  32. C. A. McLaren, J. A. Retchfold, D. T. Griggs and J. M. Christie, Phys. Status Solidi, 19, 631-644 (1967) https://doi.org/10.1002/pssb.19670190216
  33. C. Frondel, The System of Mineralogy, 7th edn. vol.3, Wiley, New York (1962)
  34. K. Schmetzer, Neues. Jahrb. Min. Mon., 1, 8-15 (1987)
  35. A. C. McLaren and P. P. Phakey, Phys. Status Solidi, 13, 413-422 (1966) https://doi.org/10.1002/pssb.19660130213
  36. L. Taijing and I. Sunagawa, Phys. Chem. Min., 17, 207-211 (1990)
  37. A. R Lang, Appl. Phys. Lett., 7, 168-170 (1965) https://doi.org/10.1063/1.1754361
  38. A. C. McLaren and P. P. Phakey, Phys. Status Solidi, 31, 723-737 (1969) https://doi.org/10.1002/pssb.19690310233
  39. M. B. Walker, Phys. Rev. B, 28, 6407-6410 (1983) https://doi.org/10.1103/PhysRevB.28.6407
  40. N. Yamamoto, K. Tsuda and K. Yagi, J. Phys. Soc. Jpn., 57, 1352-1364 (1988) https://doi.org/10.1143/JPSJ.57.1352
  41. J. W. Laughner, T. W. Cline, R. E. Newnham and L. E. Cross, Phys. Chem. Min., 4, 129-137 (1979) https://doi.org/10.1007/BF00307557
  42. D. E. Voigt and S. L. Brantley, J. Cryst. Growth, 113, 527-539 (1991) https://doi.org/10.1016/0022-0248(91)90088-M
  43. D. R. Hitton, Phys. Letters, 12, 310-311 (1964) https://doi.org/10.1016/0031-9163(64)90971-0
  44. T. I. Barry, P. McNamara and W. J. Moore, J. Chem. Phys., 42, 2599-2606 (1965) https://doi.org/10.1063/1.1696338
  45. P. Stegger and G. Lehmann, Phys. Chem. Min., 16, 401-407 (1989)
  46. J. Minge, J. A. Wiel and D. G. McGavin, Phys. Rev., B40, 33-36 (1989)
  47. G. Lehmann, Zeit Naturforsch, 22(a), 2080-2086 (1967)
  48. J. Minge, M. J. Mombourquette and J. A. Wiel, Phy. Rev., B42, 6523-6528 (1989)
  49. L. M. Matarrese, J. S. Wells and R. L. Petorson, Bull. Am. Phys. Soc., 9, 502 (1964)
  50. G. Lehmann and W. J. Moore, J. Chem. Phys., 44, 1741-1745 (1966) https://doi.org/10.1063/1.1726932
  51. L. M. Matarrese, J. S. Wells and R. L. Petorson, J. Chem. Phys., 50, 2350-2360 (1969) https://doi.org/10.1063/1.1671387
  52. G. Lehmann, Phys. Kondens Materie, 13, 297-306 (1971) https://doi.org/10.1007/BF02422610
  53. G. Lehmann, Phys. Stat. Sol.(b), 48, K65-K67 (1971) https://doi.org/10.1002/pssb.2220480103
  54. C. M. Scala and D. R. Hutton, Phys. Stat. Sol.(b), 73, K115-K117 (1976) https://doi.org/10.1002/pssb.2220730254
  55. M. J. Mombourquette, W. C. Tennant and J. A. Wiel, J. Chem. Phys., 85, 68-79 (1986) https://doi.org/10.1063/1.451597
  56. R. T. Cox, J. Phys. C.: Solid State Phys., 9, 3355-3361 (1976) https://doi.org/10.1088/0022-3719/9/17/026
  57. R. T. Cox, J. Phys. C.: Solid State Phys., 10, 4631-4643 (1977) https://doi.org/10.1088/0022-3719/10/22/032
  58. A. J. Cohen, Am. Min., 70, 1180-1185 (1985)
  59. G. Lehmann and H. U. Bambauer, Angew. Chem. Int'l. Edn., 85, 281-289 (1973) https://doi.org/10.1002/ange.19730850703
  60. K. Schmetzer, J. Gemmology, 21, 368-391 (1989) https://doi.org/10.15506/JoG.1989.21.6.368
  61. A. J. Cohen and F. Hassan, Am. Min., 59, 719-728 (1974)
  62. M. C. M. O'Brien and M. H. L. Pryce, 'Paramagnetic Resonnance in Irradiated Diamond and Quartz: Defects in Crystalline Solids', Report of the conference on defects in crystalline solids, Bristol, The Physical Society, London, pp. 88-91 (1955)
  63. J. H. Mackey, J. Chem. Phys., 39, 74-83 (1963) https://doi.org/10.1063/1.1734035
  64. J. A. Wiel, 'A Review of EPR Spectroscopy of the Points Defects in a-Quartz', the decade 1982-1992. In : C. R. Helms and B. E. Deal (eds), The Physics and Chemistry of SiO$_2$ and the Si-SiO$_2$ Interface. 2. Plenum Press, New York, pp. 131-44 (1993)
  65. V. S. Balitsky, J. Cryst. Growth, 41, 100-102 (1977) https://doi.org/10.1016/0022-0248(77)90102-6
  66. N. Jayaraman, Proc. Indian Acad. Sci., A9, 265-285 (1939)
  67. D. L. Wood and A. A. Ballman, Am. Min., 51, 216-220 (1966)
  68. K. Nassau and B. E. Prescott, Min. Mag., 41, 301-312 (1977) https://doi.org/10.1180/minmag.1977.041.319.01
  69. Jv. Vultee and J. Lietz, N. Jb Min. Monat., 3, 49-58 (1956)
  70. B. Sawyer, Trans. Sonics and Ultrasonics, 19, 41 (1972) https://doi.org/10.1109/T-SU.1972.29642
  71. R. A. Laudise, A. A. Ballman and J. C. King, J. Phys. Chem. Solids, 26, 1305 (1965) https://doi.org/10.1016/0022-3697(65)90113-7
  72. IEC 758 standard, 2nd edition (1993)
  73. J. G. Gualtieri, 'The influence of temperature and electric field on the etch-channel density in swept cultured quartz', in Proc. of the 39th Annual Freq. Cont. Symp., pp. 247-254 (1985)
  74. N. Yu. Ikornikova, Soviet Physics Crystallography, 5, 726 (1961)
  75. Y. Pogodin et al., Abstracts for the Seventh International Crystallography Congress and Symposium on Crystal Growth, Nauka, Moscow, 266 (1966)
  76. V. Khadzhi et al., Dokl. AN SSSR, 130, 105 (1985)
  77. M. Higuchi et al., J. Cryst. Growth, 92, 341 (1988) https://doi.org/10.1016/0022-0248(88)90469-1
  78. S. Hirano et al., J. Ceram. Soc. Jpn., 101, 113 (1993) https://doi.org/10.2109/jcersj.101.113
  79. D. B. Fraser and D. W. Rudd, 'Method of Testing the Internal Friction of Synthetic Quartz Crystal by the Use of Two Different Frequencies of the Infrared', U. S. Pat. 3,351,757 (1965)
  80. 정수진, 결정학개론 (반도출판사, 1997), p.276
  81. R. A. Laudise and J. W. Nielsen, Solid State Phys., 12, 149 (1961) https://doi.org/10.1016/S0081-1947(08)60654-2
  82. H. Klapper, Phys. Stat. Sol. (a), 14(99), 443 (1972) https://doi.org/10.1002/pssa.2210140208
  83. N. Sakagami and K. Shibayama, 'Hydrothermal Growth and Characterization of ZnO Single Crystals', Proc. 3rd Meeting on Ferroelectric Materials and Their Applications Kyoto, pp.201-205 (1981)
  84. N. Neumann and K. Schmetzer, N .Jb. Min. Mh, 6, 272 (1984)