A Study on Approximation Model for Optimal Predicting Model of Industrial Accidents

산업재해의 최적 예측모형을 위한 근사모형에 관한 연구

  • Published : 2006.06.30

Abstract

Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare algorithms for data analysis of industrial accidents and this paper provides an optimal predicting model of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. Also, this paper provides an approximation model for an optimal predicting model based on NN. The approximation model provided in this study can be utilized for easy interpretation of data analysis using NN. This study uses selected ten independent variables to group injured people according to a dependent variable in a way that reduces variation. In order to find an optimal predicting model among 5 algorithms, a retrospective analysis was performed in 67,278 subjects. The sample for this work chosen from data related to industrial accidents during three years ($2002\;{\sim}\;2004$) in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.

Keywords

References

  1. 강현철, 한상태, 최종우, 김은석, 김미경, "SAS Enterprise Miner 4.0을 이용한 데이터마이닝 방법론 및 활용", 자유아카데미, 2001
  2. 김종현, "우리나라 산업재해 통계를 이용한 재해실태분석과 통계제도의 개선방향", 경일대학교 석사학위논문(1998) :40-60
  3. 노동부, "산업재해현황분석", (2004)
  4. 배화수, 조대현, 석경하, 김병수, 최국렬, 이종언, 노세원, 이승철, 손용희, "SAS Enterprise Miner를 이용한 데이터 마이닝", 교우사(2005)
  5. 백귀훈, "의사결정나무를 이용한 취업고객분석 및 예측", 성균관대학교 석사학위논문(2002)
  6. 이극노, 이홍철, "이동통신고객 분류를 위한 의사결정나무(C4.5)와 신경망 결합 알고리즘에 관한 연구", 한국지능정보시스템학회논문지 제9권 1호(2003)
  7. 임영문, 황영섭, 최요한, "데이터마이닝 기법을 활용한 산업재해자들에 대한 요인분석", 대한안전경영과학회지 제7권 4호(2005)
  8. 조윤정, "데이터마이닝을 이용한 종합건강진단센터의 데이터베이스 마케팅에 관한 연구", 서울대학교 보건대학원 보건학석사학위논문(2001) :53-56
  9. 최종우, 한상태, 강현철, 김은석, 김미경, 이성건, "SAS Enterprise Miner 4.0을 이용한 데이터마이닝 기능과 사용법", 자유아카데미(2001)
  10. Mevlut Ture, Imran Kurt, A. Turhan Kurum and Kazim Ozdamar, "Comparing classification techniques for predicting essential hypertension", Expert Systems with Applications, Volume 29, Issue 3(2005) :583-588 https://doi.org/10.1016/j.eswa.2005.04.014
  11. Seung Hee Ho, Sun Ha Jee, Jong Eun Lee and Jong Sup Park, "Analysis on risk factors for cervical cancer using induction technique", Expert Systems with Applications, Volume 27, Issue 1(2004) :97-105 https://doi.org/10.1016/j.eswa.2003.12.005