The Effects of Hesperidin on the Proliferation and Activity of Bone Cells

  • Bae, Moon-Seo (Dept. of Dental Pharmacology, School of Dentistry, Dankook University) ;
  • Ko, Seon-Yle (Dept. of Oral Biochemistry, School of Dentistry, Dankook University) ;
  • Kim, Se-Won (Dept. of Dental Pharmacology, School of Dentistry, Dankook University)
  • 발행 : 2006.12.31

초록

The importance of phytoestrogens to human health is currently being actively investigated. Hesperidin, abundantly found in citrus fruits, is known to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, it has been reported that hesperidin inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. In our study, to determine the possible role of hesperidin in the regulation of bone metabolism, we observed the effects of hesperidin on the proliferation and activity of osteoblasts, as well as the effects of hesperidin on osteoclast generation and activity. We observed that, when treated with hesperidin, the number and viability of osteoblastic cells increased, alkaline phosphatase (ALP) activity of osteoblastic cells increased, and osteoprotegerin (OPG) secretion from MG63 cells decreased. Hesperidin treatment had no effect on the osteoclast generation and activity in the bone marrow cell culture, but decreased the number and resorptive activity of osteoclasts generated from RAW/264.7 cells. Taken together, these results indicate that hesperidin increases the proliferation and activity of osteoblasts, while inhibiting generation and activity of osteoclasts. Although the precise role of hesperidin remains to be elucidated, our study suggests that it is one of the important modulators of bone metabolism.

키워드

참고문헌

  1. Aboobaker, V.S., Balgi, A.D. and Bhattacharya, R.K.: In vivo effect of dietary factors on the molecular action of aflatoxin B1: role of non-nutrient phenolic compounds on the catalytic activity of liver fraction. In Vivo 8:1095-1098, 1994
  2. Adlercreutz, H., Hamalainen, E., Gorbach, S. and Goldin B.: Dietary phytoestrogens and the menopause in Japan. Lancet 339:1233, 1992 https://doi.org/10.1016/0140-6736(92)91174-7
  3. Anderson, J.W., Johnstone, B.M. and Cook-Newell, M.E.: Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 333:276-282, 1995 https://doi.org/10.1056/NEJM199508033330502
  4. Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., BuBose, R.F., Cosman, D. and Galibert, L.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic cell function. Nature 390:175-179, 1997 https://doi.org/10.1038/36593
  5. Anderson, J.J., Ambrose, W.W. and Garner, S.C.: Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Proc. Soc. Exp. Biol. Med. 217:345-350, 1998
  6. Arjmandi, B.H., Alekel, L., Hollis, B.W., Amin, D., Stacewicz-Sapuntzakis, M., Guo, P. and Kukreja, S.C.: Dietary soy protein prevents bone loss in an ovariectomized rat model of osteoporosis. J. Nutr. 126:161-167, 1996 https://doi.org/10.1093/jn/126.1.161
  7. Bennetts, H., Underwood, E.J. and Shier, F.L.: A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust. Vet. J. 22:2-11, 1946 https://doi.org/10.1111/j.1751-0813.1946.tb15473.x
  8. Bellows, C.G., Aubin, J.E. and Heersche, J.N.: Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner.14:27-40, 1991 https://doi.org/10.1016/0169-6009(91)90100-E
  9. Chiba, H., Uehara, M., Wu, J., Wang, X., Masuyama, R., Suzuki, K., Kanazawa, K. and Ishimi, Y.: Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J. Nutr. 133:1892- 1897, 2003
  10. Damon, P., Flandre, O., Michel, F., Perdrix, L., Labrid, C. and Crastes de Paulet, A.: Effect of chronic treatment with a purified flavonoid fraction on inflammatory granuloma in the rat. Study of prostaglandin $E_{2}$ and $F_{2a}$ and thromboxane $B_{2}$ release and histological changes. Arzneimittel-Forschung 37:1149-1153, 1987
  11. Emin, J.A., Oliveira, A.B. and Lapa, A.J.: Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, quartin and claussequinone, in rats and mice. J. Pharm. Pharmacol. 46:118-122, 1994 https://doi.org/10.1111/j.2042-7158.1994.tb03753.x
  12. Fanti, O., Faugere, M.C., Gang, Z., Schmidt, J., Cohen, D. and Malluche, H.H.: Sys-tematic administration of genistein partially prevents bone loss in ovariectomi-zed rats in a nonestrogen-like mechanism. Am. J. Clin. Nutr. 68(Suppl): 1517S. 1998
  13. Farley, J.R. and Baylink, D.: Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism 35:563-571, 1986 https://doi.org/10.1016/0026-0495(86)90016-8
  14. Genant, H.K., Baylink, D.J. and Gallagher, J.C.: Estrogens in the prevention of osteoporosis in postmenopausal women. Am. J. Obstet. Gynecol. 161:1842-1846. 1989 https://doi.org/10.1016/S0002-9378(89)80004-3
  15. Heaney, R.P., Recker, P.R. and Saville, P.D.: Menopausal changes in calcium balance performance. J. Lab. Clin. Med. 92:953-963, 1978
  16. Hsu, H., Lacey, D.L., Dunstan, C.R., Solovyev, I., Colombero, A., Timms, E., Tan, H.L., Elliott, G., Kelley, M.J., Sarosi, I., Wang, L., Xia, X.L., Elliott, R., Chiu, L., Black, T., Scully, S., Capparelli, C., Morony, S., Shimamoto, G., Bass, M.B. and Boyle, W.J.: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96:3540-3545, 1999
  17. Ingold, P., Kneissel, M., Muhlbauer, R.C. and Gasser, J.A.: Extracts from onion prevent tibial cortical and cancellous bone loss induced by a high phosphate/low protein diet in aged retired breeder rats. Bone 23:S387, 1998
  18. Ishimi, Y., Miyaura, C., Ohmura, M., Onoe, Y., Sato, T., Uchiyama, Y., Ito, M., Wang, X.X., Suda, T. and Ikegami, S.: Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 140:1893-1900, 1999 https://doi.org/10.1210/en.140.4.1893
  19. Ishimi, Y., Arai, N., Wang, X.X., Wu, J., Umegaki, K., Miyaura, C., Takada, A. and Ikegami, S.: Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem. Biophys. Res. Commun. 274:697-701, 2000 https://doi.org/10.1006/bbrc.2000.3175
  20. Kong, Y.Y., Yasuda, H., Sarosi, I.,Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dubstan, C., Lacey, D.L., Mak, T.W., Boyle, W.J. and Penninger, J.M.: OPGL is a key regulator of osteoclastogenesis, lymphocyte develop- ment and lymph node organogenesis. Nature 397:315-323, 1999 https://doi.org/10.1038/16852
  21. Korach, K.S., Migliaccio, S. and Davis, V.L.: Estrogens. In Principles of pharmacology - Basic concepts and clinical applications, edited by Munson, P.L., pp. 809-825, Chapman and Hall, New York, 1994
  22. Kurzer, M.S. and Xu, X.: Dietary phytoestrogens. Annu. Rev. Nutr. 17:353-381, 1997 https://doi.org/10.1146/annurev.nutr.17.1.353
  23. Lee, S.H., Jeong, T.S., Park, Y.B., Kwon, Y.K., Choi, M.S. and Bok, S.H.: Hypocholesterolemic effect of hesperidin mediated by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase in rats fed high-cholesterol diet. Nutr. Res. 19:1245-1258, 1999 https://doi.org/10.1016/S0271-5317(99)00085-8
  24. Messina, M.J., Persky, V., Setchell, K.D.R. and Barnes, S.: Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer 21:113-131, 1994 https://doi.org/10.1080/01635589409514310
  25. Monforte, M.T., Trovato, A., Kirjavainen, S., Forestieri, A.M., Galayi, E.M. and Lo Curto, R.B.: Biological effects of hesperidin, a Citrus flavonoid: hypolipidemic activity on experimental hypercholesterolemia in rat. Farmaco 50:595- 599, 1995
  26. Muhlbauer, R.C. and Li, F.: Effect of vegetables on bone metabolism. Nature 401:343-344, 1999 https://doi.org/10.1038/43824
  27. Recker, R.R.: Current therapy for osteoporosis. J. Clin. Endocrinol. Metab. 76:14-16, 1993 https://doi.org/10.1210/jc.76.1.14
  28. Riggs, B.L. and Melton III, L.J.: The prevention and treatment of osteoporosis. N. Eng. J. Med. 327:620-627, 1992 https://doi.org/10.1056/NEJM199208273270908
  29. Rodan, G.A.: Emerging therapies in osteoporosis. Annu. Rep. Med. Chem. 29:275-285, 1994 https://doi.org/10.1016/S0065-7743(08)60741-1
  30. Setchell, K.D.R.: Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68:1333S-1346S, 1998 https://doi.org/10.1093/ajcn/68.6.1333S
  31. Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.S., Luthy, R., Nguyen, H.Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H.L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, L., Hughes, T.M., Hill, D., Pattison, W., Campbell, P. and Boyle, W.J.: Osteoprotegerin; a novel secreted protein involved in the regulation of bone density. Cell 89:309-319, 1997 https://doi.org/10.1016/S0092-8674(00)80209-3
  32. Sugimoto, E. and Yamaguchi, M.: Anabolic effect of genistein in osteoblastic MC3T3-E1 cells. Int. J. Mol. Med. 5515-520, 2000