Geochemistry of Mn Scales Formed in Groundwater in the Damyang Area

담양 지역 음용 지하수에 형성된 망간 스케일에 대한 지구화학

  • Published : 2006.06.30

Abstract

This study investigated the geochernical characteristics of Mn scale formed in groundwater wells at the Damyang area. The composition of Mn scale consists mainly of MnO and $SiO_2$. The content of Mn ranges from56.61wt.% to 68.69wt.%, and $SiO_2$ content ranges from 1.56wt.% to 10.45wt.%. The contents of Mo and Ba in Mn scale increased with increased depth; whereas, the content of Zn and Pb decreased with increased depth. Birnessite, quartz and feldspars were identified in Mn scales using x-ray powder diffraction studies. The IR absorption bands for Mn scales show major absorption band due to OH stretching, adsorbed molecular water, and birnessite stretching, respectively. In the SEM and EDS analysis, the Mn scale consists of botryoidal, spherical, spherulite, and empty straw structure. Those structure may be precipitated simply due to oversaturation with concentrated Mn content or may be formed through biogenic precipitation by Lepthothrix discophora. Under microanalysis using EDS on those structure surface of Mn scales, the Mn atomic percent range from 28 to 44, and such elements revealed the presence of Si, K, Na, Ca, Cl, Cu, Zn, and Ba.

담양 지역의 음용 지하수 중에 형성된 망간 스케일의 지구화학적 특성을 규명하고자 하였다. 망간 스케일은 MnO 및 $SiO_2$로 구성되어 있고, MnO의 함량은 56.61wt.%에서 68.69wt.%, 그리고 $SiO_2$ 함량은 1.56wt.%에서10.45wt.%로 나타난다. 망간 스케일 중의 Ba와 Mo 함량은 지하수 심도가 증가할수록 증가하여 나타나고 Zn과 Pb는심도가 증가할수록 감소한다. 망간 스케일을 x-선 회절 분석을 한 결과 birnessite, 석영 및 장석이 분석되었다. IR 분석에서 망간 스케일은 OH, $H_2O$ 그리고 birnessite에 의한 흡수 밴드가 관찰된다. SEM 및 EDS 분석에서 망간 스케일은 포도송이 구조, 과립 구조, 구상 구조 및 속이 빈 straw 구조로 되어 있는 것이 관찰된다. 이들 구조들은 고농도의 망간함량에 의해 단순히 과포화로 침전되었을 것으로 생각되며, 혹은 Lepthothrix discophora에 의해 미생물적으로 침전되었을 것으로 생각된다. 이들 구조들의 표면을 EDS로 분석한 결과 Mn의 원자(atomic) 퍼센트가 28에서 44범위로 나타나고 Si, K, Na, Ca, Cl, Cu, Zn 및 Ba 등이 검출된다.

Keywords

References

  1. 김익수, 이재영, 최상일, 2004, 서울지역의 지하수 수질특성에 관한 연구. 지하수토양환경, 9(2), 54-63
  2. 김진삼, 김주환, 정수은, 김형수, 윤성택, 2003, 충적층 지하수 활용 가능성 검토지역에 대한 철.망간 분포특성 고찰. 한국지하수토양환경학회 춘계학술발표논문집, p. 279-282
  3. 박천영, 신인현, 안건상, 이창신, 정연중, 최낙철, 1999, 광주광역시 지하수에 대한 환경오염 실태와 지구화학적 특성연구. 한국지구과학회지, 20(3), 266-276
  4. 우남칠, 최미정, 정성옥, 이승구, 1999, 경기도 용인시 일대 천부 지하수의 수질특성 연구. 지하수환경, 6(2), 53-58
  5. 이석훈, 김수진, 2002, 흑운모의 풍화작용에 의한 1:1 점토 광물의 형성매카니즘. 한국광물학회지, 15(3), 221-230
  6. Belzile, N., De Vitre, R.R., and Tessier, A., 1989, In situ collection of diagenetic iron and manganese oxyhydroxides from natural sediments. Nature, 340, 376-377 https://doi.org/10.1038/340376a0
  7. Bilinski, H., Giovannoli, R., Usui, A., and Hanzel, D., 2002, Characterization of Mn oxides in cemented crusts from Pinal Creek, Arizona, USA, and in hot-spring deposites from Yuno-Taki Falls, Hokkaido, Japan. American Mineralogist, 87, 580-591 https://doi.org/10.2138/am-2002-0423
  8. Bish, D.L. and Post, J.E., 1989, Thermal behavior of complex, tunnel-structure manganese oxides. American Mineralogist, 74, 177-186
  9. Brown, G., 1980, Associated minerals. In Brindley, G.W., and Brown, G. (ed.), Crystal structures of clay minerals and their x-ray identification. Mineralogical Society, 361-410
  10. Buckley, A., 1989, An electron microprobe investigation of the chemistry of ferromanganese coating on freshwater sediments. Geochimica et Cosmochimica Acta, 53, 115- 124 https://doi.org/10.1016/0016-7037(89)90277-9
  11. Ehrlich, H.L., 1990, Geomicrobiology. Marcel Dekker, Inc., New York, 646 p
  12. Geesey, G.G., Beech, I., Bremer, P.J., Webster, B.J., and Wells, D.B., 2000, Biocorrosion. In Bryers, J.D. (ed.), Biofilms II. Wiley-Liss, New York, 281-325
  13. Harriss, R.C. and Troup, A.G., 1969, Freshwater ferromanganese concretions: chemistry and internal structure. Science, 166, 604-606 https://doi.org/10.1126/science.166.3905.604
  14. Hoehn, E. and Von Gunten, H. R., 1985, Distribution of metal pollution in groundwater determined from sump sludges in wells. Water Science Technology, 1 (17), 115-132
  15. Houben, G.J., 2003, Iron oxide incrustation in wells. Part 1: genesis, mineralogy and geochemistry. Applied Geochemistry, 18, 927-939 https://doi.org/10.1016/S0883-2927(02)00242-1
  16. Jacobs, L.A., Von Gunten, H.R., Keil, R., and Kuslys, M., 1988, Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochimica et Cosmochimica Acta, 52, 2693-2706 https://doi.org/10.1016/0016-7037(88)90038-5
  17. Julien, C.M., Massot, M., and Poinsignon, C., 2003, Lattice vibrations of manganese oxides, Part 1. Periodic structures. Spectrochimica Acta Part A, 1-12
  18. Mckenzie, R.M., 1989, Manganese oxide and hydroxide. In Dixon, J,B. and Weed, S.B. (ed.), Minerals in soil environments. Soil Science Society of America, WI, 439- 465
  19. Mita, N., Maruyama, A., Usui, A., Higashihara, T., and Hariya, Y., 1994, A growing deposit of hydrous manganese oxide produced by microbial mediation at a hot spring Japan. Geochemical Journal, 28, 71-80 https://doi.org/10.2343/geochemj.28.71
  20. Moore, J.W., 1991, Inorganic contamination of surface water. Springer-Verlag, NY, 178-192
  21. Mustoe, G.E., 1981, Bacterial oxidation of manganese and iron in a modern cold spring. Geological Society of America Bulletin Part 1, 92, 147-153 https://doi.org/10.1130/0016-7606(1981)92<147:BOOMAI>2.0.CO;2
  22. Potter, R.M. and Rossman, G.R., 1979a, Mineralogy of manganese dendrites and coating. American Mineralogist, 64, 1219-1226
  23. Potter, R.M. and Rossman, G.R., 1979b, The tetravalent manganese oxides: identification, hydration, and structure relationships by infrared spectroscopy. American Mineralogist, 64, 1199-1218
  24. Robbins, E.I., D'Agostino, J.P., Ostwald, J., Fanning, D.D., Carter, V., and Van Hoven, R.L., 1992, Manganese nodules and microbial oxidation of manganese in the Huntly Meadows wetland, Virginia, USA. In Skinner, H.C.W. and Fitzpatrick, R.W. (ed.), Biomineralization processes of iron and manganese: modern and ancient environments. Catena Supplement 21, 179-202
  25. Tani, Y., Miyata, N., Iwahori, K., Soma, M., Tokuda, S., Seyama, H., and Theng, B.K.G., 2003, Biogeochemistry of manganese oxide coating on pebble surface in the Kikawa river system, Shizuoka, Japan. Applied Geochemistry, 18, 1541-1554 https://doi.org/10.1016/S0883-2927(03)00075-1
  26. Thomas, N.E., Kan, K.T., Bray, D.I., and MacQuarrie, T.B., 1994, Temporal changes in manganese concentrations in water from the Fredericton aquifer, New Brunswick. Ground Water, 32 (4), 650-656 https://doi.org/10.1111/j.1745-6584.1994.tb00901.x
  27. Usui, A. and Mita, N., 1995, Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays and Clay Minerals, 43 (1), 116- 127 https://doi.org/10.1346/CCMN.1995.0430114
  28. Von Gunten, H.R. and Kull, T.P., 1986, Infiltration of inorganic compounds from the Glatt river, Switzerland, into a groundwater aquifer. Water, Air, Soil Pollution, 29, 333-346 https://doi.org/10.1007/BF00158764
  29. Von Gunten, H.R., Karametaxas, G., Krahenbuhl, U., Kuslys, M., Giovanoli, R., Hoehn, E., and Keil, R., 1991, Seasonal biogeochemical cycles in riverborne groundwater. Geochimica et Cosmochimica Acta, 55, 3597-3609 https://doi.org/10.1016/0016-7037(91)90058-D