산왕거미 (Araneus ventricosus) 혈구의 미세구조

The Fine Structure of Spider (Araneus ventricosus) Hemocytes

  • 최재영 (단국대학교 첨단과학대학 생물학과) ;
  • 문명진 (단국대학교 첨단과학대학 생물학과)
  • 발행 : 2006.12.31

초록

산왕거미 (Araneus ventricosus) 혈구의 유형을 세포화학적 및 percoll 밀도구배를 이용한 물리화학적 특성에 따라 구분하고, 각각의 미세구조를 고배율의 전자현미경으로 비교 관찰하였다. 혈구는 세포질에 함유된 과립의 유무에 따라 과립혈구와 무과립혈구로 구분되었으며. 과립혈구는 과립의 특성에 따라 다시 산호성 과립혈구와 염기호성 과립혈구, 그리고 헤모시아닌 과립을 함유한 혈색소혈구의 세 가지 유형으로 세분되었다. 산호성 과립혈구는 전체 혈구유형중 약 5%정도를 차지하였으며, 염기호성 과립혈구는 산호성 과립혈구에 비해 과립의 크기가 크고 구형이었다. 한편 무과립혈구는 혈구중 가장 크기가 작은 투명혈구와 심관의 내강에 주로 분포하는 편도혈구, 그리고 탈피 시에만 출현하는 대형의 탈피혈구로 다시 세분되었다.

Hemocytes of the spider Araneus ventricosus were investigated with histochemistry, density analysis of percoll gradient, and fine structural examinations using transmission electron microscope. The hemocytes of this spider were classified into two major groups: granulocytes and non-granulocytes. The granular hemocytes were subdivided into three subtypes according to their histochemical properties which are eosinophilic granuloctes(EGs), basophilic granulocytes(BGs) and cyanocytes. The EGs, which have small granules within the cytoplasm comprise about 5% of the total henocytes. However the granules of BGs are larger than those of HGs. The cyanocytes were characterized to contain hemocyanin granules in their cytoplasm. On the other hand, the non-granulocytes were divided into three subtypes; hyaline leucocytes, oenocytoids, and molting homocytes. The hyaline leucocytes are the most abundant and the smallest hemocyte type in this spider. The oenocytoids that have $10{\sim}15{\mu}m$ in diameter are mostly found at the marginal region of the myocardium in the heart tube. The molting hemocytes, which only appeared during the molting period, contains plenty of glycogen particles in their cytoplasm.

키워드

참고문헌

  1. Ahmad A: Free hemocytes in adult Polistes hebroeus Fabr. (Hymenoptera: Vespidae). J Entomol Res 12 : 28-35, 1988
  2. Anggraeni T, Ratcliffe NA: Studies on cell-cell cooperation during phagocytosis by purified haemocyte populations of the wax moth Gallaria mellonella. J Insect Physiol 37 : 453-460, 1991 https://doi.org/10.1016/0022-1910(91)90055-5
  3. Bohn H: Differential adhesion of the haemocytes of Leucophaea maderae (Blattaria) to a glass surface. J Insect Physiol 23 : 185-194, 1977 https://doi.org/10.1016/0022-1910(77)90028-2
  4. Brehelin M, Zachary D, Hoffmann JA: A comparative ultrastructural study of blood cells from nine insect orders. Cell Tiss Res 195 : 45-57, 1978
  5. Browning HC: The integument and moult cycle of Tegenaria atrica (Araneae). Proc Roy Soc London B 131 : 65-86, 1942
  6. Chain BM, Anderson RS: Selective depletion of the plasmatocytes in Galleria mellonella following injection of bacteria. J Insect Physiol 28 : 377-384, 1982a https://doi.org/10.1016/0022-1910(82)90051-8
  7. Chain BM, Anderson RS: Observations on the cytochemistry of the hemocytes of an insect, Galleria mellonella. J Histochem Cytochem 31 : 601-607, 1982b
  8. Chang BS, Yoe SM: Electron microscopic study on the hemocytes of the wolf spider, Pardosa astrigera. Kor J Electr Microsc 25 : 29-38, 1995. (Korean)
  9. Chase SF: Characterization of the hemolymph of the spider Araneus cavaticus: hemocytes and proteins. Thesis in Univ. of New Hampshire, USA, 1994
  10. Choi JY, Moon MJ: Fine structure of the heart tube and its cardiac muscle cells in the spider, Araneus ventricosus. Kor J Electr Microsc 33 : 325-333, 2003. (Korean)
  11. Deevey GB: The blood cells of the Haitian tarantula and their relation to the mounting cycle. J Morphol 68 : 457-451, 1941 https://doi.org/10.1002/jmor.1050680303
  12. Fahrenbach WH: The cyanoblast: hemocyanin formation in Limulus polyphemus. J Cell Biol 44 : 445-453, 1970 https://doi.org/10.1083/jcb.44.2.445
  13. Fenoglio C, Bernardini P, Gervaso MV: Cytochemical characterization of the hemocytes of Leucophaea maderae (Dictyoptera: Blaberoidea). J Morphol 218 : 115-126, 1993 https://doi.org/10.1002/jmor.1052180202
  14. Foelix RF: Biology of Spiders (2nd ed). pp. 52-67, Oxford Univ. Press, London, 1996
  15. Groome JR, Townley MA, Detschaschell M, Tillinghast EK: Detection and isolation of proctolin-like immunoreactivity in arachnids: Possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37 : 9-19, 1991 https://doi.org/10.1016/0022-1910(91)90013-P
  16. Gupta AP: Hemocyte types: their structures, synonymies interrelationships, and taxonomic significance. In: Gupta AP, ed, Insect Hemocytes, pp. 85-127, Cambridge Univ. Press, Cambridge, 1979
  17. Gupta AP: Cellular elements in hemolymph. In: Kerkut GA, Gilbert LI, eds, Comprehensive Insect Physiology, Biochemistry, and Pharmacology, vol 3, pp. 401-451, Pergamon Press, Oxford, 1985
  18. Hernandez S, Lanz H, Rodriguez MH, Torres JA, Martinez PA, Tsutsumi V: Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. J Med Entomol 36 : 426-434, 1999 https://doi.org/10.1093/jmedent/36.4.426
  19. Joshi PA, Lambdin PL: The ultrastructure of hemocytes in Dactylopius confusus (Cockerell), and the role of granulocytes in the synthesis of cochineal dye. Protoplasma 192 : 199-216, 1996 https://doi.org/10.1007/BF01273892
  20. Karnovsky MJ: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27 : 137-138, 1965
  21. Lavine MD, Strand MR: Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32 : 1295-1309, 2002 https://doi.org/10.1016/S0965-1748(02)00092-9
  22. Lowenberger C: Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 31 : 219-229, 2001 https://doi.org/10.1016/S0965-1748(00)00141-7
  23. Midttun B, Jensen H: Ultrastructure of oenocytoids from two spiders, Pisaura mirabilis and Trochosa terricola (Araneae). Acta Zool 59 : 157-167, 1978 https://doi.org/10.1111/j.1463-6395.1978.tb01031.x
  24. Paul RJ: La respiration des arachnides. La Recherche 226 : 1338-1357, 1990
  25. Peake PW: Isolation and characterization of the haemocytes of Calliphora vicina on density gradients of Ficoll. J Insect Physiol 25 : 795-803, 1979 https://doi.org/10.1016/0022-1910(79)90082-9
  26. Pech LL, Strand MR: Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 109 : 2053-2060, 1996
  27. Pech LL, Strand MR: Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. J Insect Physiol 46 : 1565-1573, 2000 https://doi.org/10.1016/S0022-1910(00)00083-4
  28. Ravindranath MH: A comparative study of the morphology and behaviour of granular haemocytes of arthropods. Cytologia 42 : 743-751, 1977 https://doi.org/10.1508/cytologia.42.743
  29. Renwrantz LR, Mead GP, Ratcliffe NA: The separation of insect haemocyte types on percoll gradients: methodology and problems. J Insect Physiol 32 : 167-177, 1986 https://doi.org/10.1016/0022-1910(86)90137-X
  30. Seitz KA: Zur Feinstruktur der hautungsha mo cyten vou Cupiennius salei keys (Araneae: Ctenidae). Zool Jb Anat Bd 96 : 280-292, 1976
  31. Sherman RG: Ultrastructurally different hemocytes in a spider. Can J Zool 51 : 1155-1165, 1973 https://doi.org/10.1139/z73-167
  32. Tojo S, Naganuma F, Arakawa K, Yokoo S: Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46 : 1129-1135, 2000 https://doi.org/10.1016/S0022-1910(99)00223-1
  33. Yokoo S, Goetz P, Tojo S: Phagocytic activities of haemocytes separated by two simple methods from larvae of two lepidopteran species, Agrotis segetum and Galleria mellonella. Appl Entomol Zool 30 : 343-350, 1995 https://doi.org/10.1303/aez.30.343