CRITICAL POINTS AND MULTIPLE
 SOLUTIONS OF A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

Kyeongpyo Choi

Abstract

We consider a semilinear elliptic boundary value problem with Dirichlet boundary condition $A u+b u^{+}-a u^{-}=t_{1} \phi_{1}+t_{2} \phi_{2}$ in Ω and ϕ_{n} is the eigenfuction corresponding to $\lambda_{n}(n=1,2, \cdots)$. We have a concern with the multiplicity of solutions of the equation when $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$.

1. Introduction

Let Ω be a bounded set in $\mathbf{R}^{n}(n \geq 1)$ with smooth boundary $\partial \Omega$ and let A denote the elliptic operator

$$
\begin{equation*}
A=\sum_{1 \leq i, j \leq n} a_{i, j}(x) D_{i} D_{j}, \tag{1.1}
\end{equation*}
$$

where $a_{i j}=a_{j i} \in C^{\infty}(\bar{\Omega})$.
We consider a semilinear elliptic equation with Dirichlet boundary condition

$$
\begin{align*}
A u+b u^{+}-a u^{-} & =h(x) \quad \text { in } \quad \Omega . \tag{1.2}\\
u & =0 \quad \text { on } \quad \partial \Omega .
\end{align*}
$$

Here A is a second order elliptic differential operator and a mapping from $L^{2}(\Omega)$ into itself with compact inverse, with eigenvalues $-\lambda_{i}$, each repeated as often as multiplicity. We denote ϕ_{n} to be the eigenfuction corresponding to $\lambda_{n}(n=1,2, \cdots)$, and ϕ_{1} is the eigenfuction such that

Received November 17, 2006.
2000 Mathematics Subject Classification: 35J65, 35J20.
Key words and phrases: multiplicity of solutions, critical points.
$\phi_{1}>0$ in Ω and the set $\left\{\phi_{n} \mid n=1,2,3 \cdots\right\}$ is an orthonormal set in H, where H is a Hilbert space with inner product

$$
(u, v)=\int_{\Omega} u v, \quad u, v \in L^{2}(\Omega) .
$$

We suppose that $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$. Under these assumptions, we have a concern with the multiplicity of solutions of (1.2) when h is generated by two eigenfunctions ϕ_{1} and ϕ_{2}. Then equation (1.2) is equivalent to

$$
\begin{equation*}
A u+b u^{+}-a u^{-}=h \quad \text { in } \quad H, \tag{1.3}
\end{equation*}
$$

where $h=t_{1} \phi_{1}+t_{2} \phi_{2}\left(t_{1}, t_{2} \in \mathbf{R}\right)$. Hence we will study the equation (1.3). To study equation (1.3), We use the contraction mapping principle to reduce the problem from an infinite dimensional space in H to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by $\left\{\phi_{1}, \phi_{2}\right\}$ and W be the orthogonal complement of V in H. Let P be an orthogonal projection H onto V. Then every element $u \in H$ is expressed as

$$
u=v+w,
$$

where $v=P u, w=(I-P) u$. Hence equation (1.3) is equivalent to a system

$$
\begin{equation*}
A w+(I-P)\left(b(v+w)^{+}-a(v+w)^{-}\right)=0 \tag{1.4}
\end{equation*}
$$

Here we look on (1.4) and (1.5) as a system of two equation in the two unknowns v and w. We can see that for fixed $v \in V$, (1.4) has a unique solution $w=\theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous(with respect to the L^{2}-norm) in terms of v.

The study of the multiplicity of solution of (1.3) is reduced to the study of the multiplicity of solutions of an equivalent problem

$$
\begin{equation*}
A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right)=t_{1} \phi_{1}+t_{2} \phi_{2} \tag{1.6}
\end{equation*}
$$

defined on the two dimensional subspace V spanned by $\left\{\phi_{1}, \phi_{2}\right\}$.
While one feels intuitively that (1.6) ought to be easier to solve than (1.3), there is the disadvantage of an implicitly defined term $\theta(v)$ in the equation. However, in our case, it turns out that we know $\theta(v)$ for some special $v^{\prime} s$.

If $v \geq 0$ or $v \leq 0$, then $\theta(v) \equiv 0$. For example, let us take $v \geq 0$ and $\theta(v)=0$. Then equation (1.4) reduces to

$$
A 0+(I-P)\left(b v^{+}-a v^{-}\right)=0
$$

which is satisfied because $v^{+}=v, v^{-}=0$ and $(I-P) v=0$, since $v \in V$. Since the subspace V is spanned by $\left\{\phi_{1}, \phi_{2}\right\}$ and ϕ_{1} is a positive eigenfuction, there exists a cone C_{1} defined by

$$
C_{1}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|c_{1} \geq 0,\left|c_{2}\right| \leq q c_{1}\right\}\right.
$$

for some $q>0$ so that $v \geq 0$ for all $v \in C_{1}$ and a cone C_{3} defined by

$$
C_{3}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2}\left|c_{1} \leq 0,\left|c_{2}\right| \leq q\right| c_{1} \mid\right\}
$$

so that $v \leq 0$ for all $v \in C_{3}$.
Thus, even if we do not know $\theta(v)$ for all $v \in V$. we know $\theta(v) \equiv 0$ for $v \in C_{1} \cup C_{3}$.

2. The existence of solutions and source terms

Now we define a map $\Pi: V \rightarrow V$ given by

$$
\Pi(v)=A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right), \quad v \in V .
$$

Then, we can obtain that the following theorem.
Theorem 2.1. $\Pi(c v)=c \Pi(v)$ for $c \geq 0$.

We investigate the image of the cones C_{1}, C_{3} under Π. First, we consider the image of cone C_{1}. If $v=c_{1} \phi_{1}+c_{2} \phi_{2} \geq 0$, we have

$$
\begin{aligned}
\Pi(v) & =A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right) \\
& =-c_{1} \lambda_{1} \phi_{1}-c_{2} \lambda_{2} \phi_{2}+b\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) \\
& =c_{1}\left(b-\lambda_{1}\right) \phi_{1}+c_{2}\left(b-\lambda_{2}\right) \phi_{2} .
\end{aligned}
$$

Thus the image of the rays $c_{1} \phi_{1} \pm q c_{1} \phi_{2}\left(c_{1} \geq 0\right)$ can explicitly calculated and they are

$$
\begin{equation*}
c_{1}\left(b-\lambda_{1}\right) \phi_{1} \pm q c_{1}\left(b-\lambda_{2}\right) \phi_{2} \quad\left(c_{1} \geq 0\right) \tag{2.1}
\end{equation*}
$$

Therefore If $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$, then Π maps C_{1} onto the cone

$$
R_{1}=\left\{d_{1} \phi_{1}+d_{2} \phi_{2}\left|\quad d_{1} \geq 0,\left|d_{2}\right| \leq q\left(\frac{b-\lambda_{2}}{b-\lambda_{1}}\right) d_{1}\right\} .\right.
$$

Second, similarly, the image of the rays $-c_{1} \phi_{1} \pm q c_{1} \phi_{2}\left(c_{1} \geq 0\right)$ are

$$
\begin{equation*}
c_{1}\left(\lambda_{1}-a\right) \phi_{1} \pm q c_{1}\left(\lambda_{2}-a\right) \phi_{2} \quad\left(c_{1} \geq 0\right) \tag{2.2}
\end{equation*}
$$

Therefore, if $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$, then Π maps the cone C_{3} onto the cone

$$
R_{3}=\left\{\begin{array}{l|l}
d_{1} \phi_{1}+d_{2} \phi_{2} & \left|d_{1} \leq 0,\left|d_{2}\right| \leq q\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right) d_{1}\right\} .
\end{array}\right.
$$

Now we set

$$
\begin{aligned}
C_{2} & =\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|\quad c_{2} \geq 0, c_{2} \geq q\right| c_{1} \mid\right\} \\
C_{4} & =\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|\quad c_{2} \leq 0,\left|c_{2}\right| \geq q\right| c_{1} \mid\right\}
\end{aligned}
$$

Then the union of C_{1}, C_{2}, and C_{3}, C_{4} are the space V.

We remember the map $\Pi: V \rightarrow V$ given by

$$
\Pi(v)=A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right), \quad v \in V .
$$

Let $R_{i}(1 \leq i \leq 4)$ be the image of $C_{i}(1 \leq i \leq 4)$ under Π.

Theorem 2.2. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$.
(a) If h belongs to R_{1}, then equation (1.2) has a positive solution and no negative solution. If h belongs to R_{3}, then equation (1.2) has a negative solution.
(b) For $i=1,3$, the image of Π_{i} is R_{i} and $\Pi_{i}: C_{i} \rightarrow R_{i}$ is bijective.

Proof. (a) From (2.1) and (2.2), if h belongs to R_{1}, the equation $\Pi(v)=t_{1} \phi_{1}+t_{2} \phi_{2}$ has a positive solution in the cone C_{1}, namely $\frac{t_{1}}{b-\lambda_{1}} \phi_{1}+\frac{t_{2}}{b-\lambda_{2}} \phi_{2}$, and if h belongs to R_{3}, the equation $\Pi(v)=t_{1} \phi_{1}+$ $t_{2} \phi_{2}$ has a negative solution in C_{3}, namely $-\frac{t_{1}}{\lambda_{1}-a} \phi_{1}-\frac{t_{2}}{\lambda_{2}-a} \phi_{2}$.
(b) We consider the restriction Π_{1}. By (2.1), the restriction Π_{1} maps C_{1} onto R_{1}. Let l_{1} be the segment defined by

$$
l_{1}=\left\{\phi_{1}+d_{2} \phi_{2}| | d_{2} \left\lvert\, \leq q\left(\frac{b-\lambda_{2}}{b-\lambda_{1}}\right)\right.\right\} .
$$

Then the inverse image $\Pi_{1}^{-1}\left(l_{1}\right)$ is a segment

$$
\mathcal{L}_{1}=\left\{\left.\frac{1}{b-\lambda_{1}}\left(\phi_{1}+c_{2} \phi_{2}\right)| | c_{2} \right\rvert\, \leq q\right\} .
$$

It follow from Theorem 2.1 that $\Pi_{1}: C_{1} \rightarrow R_{1}$ is bijective. Similarly, $\Pi_{3}: C_{3} \rightarrow R_{3}$ is also a bijection.

We set

$$
\begin{aligned}
C_{2} & =\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2}\left|c_{2} \geq 0, c_{2} \geq q\right| c_{1} \mid\right\} \\
C_{4} & =\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2}\left|c_{2} \leq 0,\left|c_{2}\right| \geq q\right| c_{1} \mid\right\}
\end{aligned}
$$

Then the union of C_{1}, C_{2}, and C_{3}, C_{4} is the space V. Theorem 2.1 means that the images $\Pi\left(C_{2}\right)$ and $\Pi\left(C_{4}\right)$ are the cones in the plane V. Before we investigate the images $\Pi\left(C_{2}\right)$ and $\Pi\left(C_{4}\right)$, we set

$$
R_{2}^{*}=\left\{\left.d_{1} \phi_{1}+d_{2} \phi_{2}\left|-q^{-1}\right| \frac{\lambda_{1}-a}{\lambda_{2}-a}\left|d_{2} \leq d_{1} \leq q^{-1}\right| \frac{b-\lambda_{1}}{b-\lambda_{2}} \right\rvert\, d_{2}\right\}
$$

where $d_{2} \geq 0$. And let

$$
R_{4}^{*}=\left\{\left.d_{1} \phi_{1}+d_{2} \phi_{2}\left|-q^{-1}\right| \frac{\lambda_{1}-a}{\lambda_{2}-a}| | d_{2}\left|\leq d_{1} \leq q^{-1}\right| \frac{b-\lambda_{1}}{b-\lambda_{2}}| | d_{2} \right\rvert\,\right\}
$$

where $d_{2} \leq 0$. Then the union of $R_{1}, R_{2}^{*}, R_{3}, R_{4}^{*}$ is the plane V.

To investigate a relation between the multiplicity of solutions and source terms in a nonlinear elliptic differential equation

$$
A u+b u^{+}-a u^{-}=h \quad \text { in } \quad H,
$$

we consider the restriction $\left.\Pi\right|_{C_{i}}(1 \leq i \leq 4)$ of Π to the cone C_{i}. Let $\Pi_{i}=\left.\Pi\right|_{C_{i}}$, i.e.,

$$
\Pi_{i}: C_{i} \rightarrow V .
$$

We have investigated next theorem in [3]
Theorem 2.3. For $i=2$, 4, if we let $\Pi_{i}\left(C_{i}\right)=R_{i}$, then R_{2} is one of sets $R_{1} \cup R_{4}^{*}$ or $R_{2}^{*} \cup R_{3}$, and R_{4} is one of sets $R_{3} \cup R_{4}^{*}$ or $R_{1} \cup R_{2}^{*}$. Furthermore the restriction Π_{i} maps C_{i} onto R_{i}.

3. Critical points and multiplicity results

We investigate the multiplicity of solutions of a nonlinear elliptic differential equation

$$
\begin{equation*}
A u+b u^{+}-a u^{-}=t \phi_{1} \quad \text { in } \quad H \tag{3.1}
\end{equation*}
$$

where $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$ and $t>0$.
Above all, We will investigate using critical point theory that $R_{2}=$ $R_{1} \cup R_{4}^{*}$ and $R_{4}=R_{1} \cup R_{2}^{*}$.

Henceforth, let F denote the functional defined by

$$
\begin{equation*}
F(u)=\int_{\Omega}\left[\frac{1}{2}|\nabla u|^{2}-G(u)+t \phi_{1} u\right] d x \tag{3.2}
\end{equation*}
$$

where $G(u)=\frac{1}{2}\left(b\left(u^{+}\right)^{2}+a\left(u^{-}\right)^{2}\right)$ and $u \in E$. Then,

$$
D F(u) y=F^{\prime}(u) y=\int_{\Omega}\left(\nabla u \cdot \nabla y-g(u) y+t \phi_{1} y\right) d x \text { for all } y \in E
$$

and solutions of (3.1) coincide with solutions of

$$
\begin{equation*}
D F(u)=0 \tag{3.3}
\end{equation*}
$$

where $g(u)=G^{\prime}(u)=b u^{+}-a u^{-}$.
Therefore, we shall investigate critical points of F. We know the following theorem.

Theorem 3.1. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}, h \in V$. Let $v \in V$ be given. Then there exists a unique solution $z \in W$ of the equation

$$
\begin{equation*}
A z+(I-P)\left(b(v+z)^{+}-a(v+z)^{-}-h\right)=0 \quad \text { in } \quad W . \tag{3.4}
\end{equation*}
$$

If $z=\theta(v)$, then θ is continuous on V and we have $D F(v+\theta(v))(w)=0$ for all $w \in W$. In particular $\theta(v)$ satisfies a uniform Lipschitz in v with respect to the L^{2}-norm. If $\tilde{F}: V \rightarrow R$ is defined by $\tilde{F}(v)=F(v+\theta(v))$, then \tilde{F} the has continuous Frechét derivative $D \tilde{F}$ with respect to v and

$$
D \tilde{F}(v)(r)=D F(v+\theta(v))(r) \quad \text { for all } \quad r \in V
$$

If v_{0} is a critical point of \tilde{F}, then $v_{0}+\theta\left(v_{0}\right)$ is a solution of (3.1) and conversely every solution of (3.1) is $D \tilde{F}\left(v_{0}\right)=0$.

Theorem 3.2. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$. Then we have:
(a) Let $t=b-\lambda_{1}\left(h=\left(b-\lambda_{1}\right) \phi_{1}\right)$. Then equation (3.1) has a positive solution v_{p} and there exists a small open neighborhood B_{p} of v_{p} in C_{1} such that in B_{p}, v_{p} is a strict local point of maximum of \tilde{F}.
(b) $t=\lambda_{1}-a\left(h=\left(\lambda_{1}-a\right) \phi_{1}\right)$. Then equation (3.1) has a negative solution v_{n} and there exists a small open neighborhood B_{n} of v_{n} in C_{3} such that in B_{n}, v_{n} is a saddle point of \tilde{F}.

Proof. (a) Let $t=b-\lambda_{1}\left(h=\left(b-\lambda_{1}\right) \phi_{1}\right)$. Then equation (3.1) has a $u_{p}=\phi_{1}$ which is of the form $u_{p}=v_{p}+\theta\left(v_{p}\right)$. (in this case $\theta\left(v_{p}\right)=0$) and $I+\theta$, where I is an identity map on V, is continuous. Since v_{p} is in the interior of C_{1}, there exists a small open neighborhood B_{p} of v_{p} in C_{1}. We note that $\theta(v)=0$ in B_{p}. Therefore, if $v=v_{p}+v^{*} \in B_{p}$, then we have

$$
\begin{aligned}
& \tilde{F}(v)=\tilde{F}\left(v_{p}+v^{*}\right) \\
&=\int_{\Omega}\left[\frac{1}{2}\left(\left|\nabla\left(v_{p}+v^{*}\right)\right|^{2}-b\left(\left(v_{p}+v^{*}\right)^{+}\right)^{2}-a\left(\left(v_{p}+v^{*}\right)^{-}\right)^{2}\right)\right. \\
&\left.\quad+h\left(v_{p}+v^{*}\right)\right] d x \\
&=\frac{1}{2} \int_{\Omega}\left(\left|\nabla v^{*}\right|^{2}-b v^{* 2}\right) d x+\int_{\Omega}\left[\nabla v_{p} \cdot \nabla v^{*}-b v_{p} v^{*}+h v^{*}\right] d x \\
&+\int_{\Omega}\left[\frac{1}{2}\left(\left|\nabla v_{p}\right|^{2}-b v_{p}^{2}\right)+h v_{p}\right] d x \\
&=\frac{1}{2} \int_{\Omega}\left(\left|\nabla v^{*}\right|^{2}-b v^{* 2}\right) d x+\int_{\Omega}\left[\nabla v_{p} \cdot \nabla v^{*}-b v_{p} v^{*}+h v^{*}\right] d x+C,
\end{aligned}
$$

where $C=\int_{\Omega}\left[\frac{1}{2}\left(\left|\nabla v_{p}\right|^{2}-b v_{p}^{2}\right)+h v_{p}\right] d x=F\left(u_{p}\right)=\tilde{F}\left(v_{p}\right)$.
If $v \in V$ and $v=c_{1} \phi_{1}+c_{2} \phi_{2}$, then we have

$$
\begin{align*}
\|v\|_{0}^{2} & =\int_{\Omega}|\nabla v|^{2} d x=\sum_{i=1}^{2} c_{i}^{2} \lambda_{i}<\lambda_{2} \sum_{i=1}^{2} c_{i}^{2} \tag{3.7}\\
& =\lambda_{2} \int_{\Omega} v^{2} d x=\lambda_{2}\|v\|^{2}
\end{align*}
$$

Let $v^{*}=c_{1} \phi_{1}+c_{2} \phi_{2}$ and let $v=v_{p}+v^{*} \in B_{p}$. Then

$$
\int_{\Omega}\left[\nabla v_{p} \cdot \nabla v^{*}-b v_{p} v^{*}+h v^{*}\right] d x=0
$$

By (3.7),

$$
\tilde{F}(v)-\tilde{F}\left(v_{p}\right)=\frac{1}{2} \int_{\Omega}\left(\left|\nabla v^{*}\right|^{2}-b v^{* 2}\right) d x<\left(\lambda_{2}-b\right) \int_{\Omega} v^{2} d x
$$

Since $\lambda_{2}<b$, it follows that for $t=b-\lambda_{1}, v_{p}$ is a strict local point of maximum for $\tilde{F}(v)$.
(b) Let $t=\lambda_{1}-a\left(h=\left(\lambda_{1}-a\right) \phi_{1}\right)$. Then equation (3.1) has a negative solution $u_{n}=-\phi_{1}$ which is of the form $u_{n}=v_{n}+\theta\left(v_{n}\right)$, where $\theta\left(v_{n}\right)$ and $-I+\theta$ is continuous in V. Since v_{n} is the interior, $\operatorname{Int} C_{3}$, of C_{3}. We note that $\theta(v)=0$ in B_{n}. Therefore, if $v=v_{n}+v_{*} \in B_{n}$, then we have to calculate

$$
\begin{aligned}
\tilde{F}(v)-\tilde{F}\left(v_{n}\right) & =\frac{1}{2} \int_{\Omega}\left(\left|\nabla v_{*}\right|^{2}-a v_{*}^{2}\right) d x \\
& =\frac{1}{2}\left(c_{1}^{2}\left(\lambda_{1}-a\right)+c_{2}^{2}\left(\lambda_{2}-a\right)\right) .
\end{aligned}
$$

The above equation implies that v_{n} is a saddle point of \tilde{F}.

Therefore, by Theorem 3.2 and [7], we can obtain the following theorem.

Theorem 3.3. Let $h \in V$ and let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$. For fixed t the functional \tilde{F}, defined on V, satisfies the Palais-Smale condition : Any sequence $\left\{v_{n}\right\}_{1}^{\infty} \subset V$ for which $\tilde{F}\left(v_{n}\right)$ is bounded and $D \tilde{F}\left(v_{n}\right) \rightarrow 0$ possesses a convergent subsequence.

Let \hat{V} be the vector space spanned by an eigenfunction ϕ_{2}. Let \hat{W} denote the orthogonal complement of \hat{V} and let $\hat{P}: H \rightarrow \hat{V}$ denote the orthogonal projection of H onto \hat{V}. By the use of (3.1),(3.2) and Theorem 3.1, we have the following statements.

Given $\hat{v} \in \hat{V}$ and $t \in \mathbf{R}$, there exists a unique solution $\hat{z}=\hat{\theta}(\hat{v})$ of

$$
A \hat{z}+(I-\hat{P}) g(\hat{v}+\hat{z})=t \phi_{1},\left.\hat{z}\right|_{\partial \Omega}=0,
$$

where $\hat{z} \in \hat{W}$.
If $\hat{z}=\hat{\theta}(\hat{v})$, then $\hat{\theta}$ is continuous on \hat{V}. Let $\hat{F}_{0}(\hat{v})$ denote the functional defined by $\hat{F}_{0}(\hat{v})=F(\hat{v}+\hat{\theta}(\hat{v}))$. Then \hat{F}_{0} has a continuous Frechét derivative $D \hat{F}_{0}$ with respect to \hat{v} and u is a solution of equation (3.1) if and only if $u=\hat{v}+\hat{\theta}(\hat{v})$ and $D \hat{F}_{0}(\hat{v})=0$, where $\hat{v}=\hat{P} u$. By Theorem3.3, for each fixed t the functional \hat{F}_{0} satisfies the Palais-Smale condition.

By Theorem 3.1, the functional $\hat{F}_{0}(\hat{v})$ satisfy the following lemma.
Lemma 3.4. If $t>0$ there exists $\alpha=\alpha(t)>0$ such that if $\hat{v} \in \hat{V}$ and $\|\hat{v}\|_{0}<\alpha(t)$, then $\hat{\theta}(\hat{v})=t \phi_{1} /\left(b-\lambda_{1}\right)$ for $t>0$ and the point $\hat{v}=0$ is a strict local point of maximum for \hat{F}_{0}.

Lemma 3.5. For $k>0$ and $t=0, \hat{F}_{0}(k \hat{v})=k^{2} \hat{F}_{0}(\hat{v})$.
Proof. Since g is positively homogeneous of degree one, it follows that
if $\hat{v} \in \hat{V}, \hat{z} \in \hat{W}$ and $A \hat{z}+(I-\hat{P}) g(\hat{v}+\hat{z})=0,\left.\hat{z}\right|_{\partial \Omega}=0$, then
$A(k \hat{z})+(I-\hat{P}) g(k \hat{v}+k \hat{z})=0$. Therefore, $\hat{\theta}(k \hat{v})=k \hat{\theta}(\hat{v})$. We see that $F_{0}(k u)=k^{2} F(u)$ for $u \in H$ and $k>0$. Hence, $\hat{F}_{0}(k \hat{v})=F(k \hat{v}+$ $\hat{\theta}(k \hat{v}))=k^{2} F(\hat{v}+\hat{\theta}(\hat{v}))=k^{2} \hat{F}_{0}(\hat{v})$.

Lemma 3.6. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$. Then we have:
(a) For $t=0, \hat{F}_{0}(\hat{v})>0$ for all $\hat{v} \in \hat{V}$ with $\hat{v} \neq 0$.
(b) For $t>0, \hat{F}_{0}(\hat{v}) \rightarrow \infty$ as $\|\hat{v}\|_{0} \rightarrow \infty$.
(c) For fixed $t>0, \tilde{F}(v) \rightarrow \infty$ along a ϕ_{2}-axis.

Proof. With Lemma 3.5 and [7], we have (a) and (b).
(c) For fixed t we see that $F(\hat{v}+\hat{\theta}(\hat{v}))=F(v+\theta(v))$. Let $\left.\tilde{F}\right|_{\hat{V}}$ be the restriction of \tilde{F} to the \hat{V}. Then $\left.\tilde{F}\right|_{\hat{V}}=\hat{F}_{0}$. By (b), if $t>0$, then $\tilde{F}(v) \rightarrow \infty$ as along a ϕ_{2}-axis.

Lemma 3.6. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$ and $t=b-\lambda_{1}$ and $q^{2}\left|\lambda_{2}-a\right|>\left|\lambda_{1}-a\right|$. Then we have $\tilde{F}(v) \rightarrow+\infty$ as $\|v\|_{0} \rightarrow \infty$ along a boundary ray of C_{3}.

Proof. Let $v=v_{p}+v_{*} \in C_{3}$ and $v_{*}=c_{1} \phi_{1}+c_{2} \phi_{2}$. Then we have

$$
\begin{aligned}
& \tilde{F}(v) \\
& =\int_{\Omega}\left[\frac{1}{2}\left(\left|\nabla\left(v_{p}+v_{*}\right)\right|^{2}-a\left(\left(v_{p}+v^{*}\right)^{-}\right)^{2}\right)\right. \\
& \left.\quad+\left(b-\lambda_{1}\right) \phi_{1}\left(v_{p}+v_{*}\right)\right] d x
\end{aligned}
$$

We note that $v_{p}+v_{*} \in \partial C_{3}$ if and only if $c_{2}=q\left(c_{1}+1\right), c_{1} \leq-1$. It can be shown easily the following holds

$$
\begin{aligned}
\tilde{F}(v)= & \frac{1}{2}\left(\left(\lambda_{1}-a\right) c_{1}^{2}+q^{2}\left(\lambda_{2}-a\right) c_{1}^{2}\right) \\
& +\left(q^{2}\left(\lambda_{2}-a\right)+(b-a)\right) c_{1}+\frac{1}{2}\left(\left(\lambda_{2}-a\right) q^{2}+(b-a)\right)+C,
\end{aligned}
$$

where $C=\int_{\Omega}\left[\frac{1}{2}\left(\left|\nabla v_{p}\right|^{2}-b v_{p}^{2}\right)+\left(b-\lambda_{1}\right) \phi_{1} v_{p}\right] d x$. Hence if $v \in \partial C_{3}$, then we have $\tilde{F}(v) \rightarrow+\infty$ as $c_{1} \rightarrow-\infty$.

Theorem 3.8. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$ and $t=b-\lambda_{1}$. Then $\tilde{F}(v)$ has a critical point in $\operatorname{Int} C_{1}$, and at least one critical point in IntC C_{2}, and at least one critical point in Int C_{4}.

Proof. We denote that $-\tilde{F}(v)=\tilde{F}_{*}(v)$. By Theorem 3.2 (a), if $t=$ $b-\lambda_{1}$, then there exists a small open neighborhood B_{p} of v_{p} in C_{1} such that in $B_{p}, v_{p}=\phi_{1}$ is a strict local point of maximum for $\tilde{F}(v)$. Hence v_{p} is a strict local point of minimum for $\tilde{F}_{*}(v)$ in C_{1}. By Lemma 3.6 $(c), \tilde{F}_{*}(v) \rightarrow-\infty$ as $\|v\|_{0} \rightarrow \infty$ along a ϕ_{2}-axis. and $\tilde{F}_{*} \in C^{1}(V, \mathbf{R})$ satisfies the Palais-Smale condition.

Since $\tilde{F}_{*}(v) \rightarrow-\infty$ as $\|v\|_{0} \rightarrow \infty$ along a ϕ_{2}-axis, we can choose v_{0} on ϕ_{2}-axis such that $\tilde{F}_{*}\left(v_{0}\right)<\tilde{F}_{*}\left(v_{p}\right)$. Let Γ be the set of all paths in V joining v_{p} and v_{0}. We write

$$
c=\inf _{\gamma \in \Gamma} \sup _{\gamma} \tilde{F}_{*}(v) .
$$

The fact that in B_{p}, v_{p} is a strict local point of minimum of \tilde{F}_{*}, the fact that $\tilde{F}_{*}(v) \rightarrow-\infty$ as $\|v\|_{0} \rightarrow \infty$ along a ϕ_{2}-axis, the fact \tilde{F}_{*} satisfies the Palais-Smale condition, and the Mountain Pass Theorem imply that

$$
c=\inf _{\gamma \in \Gamma} \sup _{\gamma} \tilde{F}_{*}(v)
$$

is a critical value of \tilde{F}_{*} (see Mountain Pass Theorem and [1, 7]). When $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$ and $t=b-\lambda_{1}$, equation (3.1) has a unique positive solution v_{p} and no negative solution. Hence there exists a critical point v_{3}, in $\operatorname{Int}\left(C_{2} \cup C_{4}\right)$, of \tilde{F}_{*} such that

$$
\tilde{F}_{*}\left(v_{3}\right)=c
$$

We prove that if $v_{3} \in \operatorname{Int} C_{4}$ such that $\tilde{F}_{*}\left(v_{3}\right)=c$, then there exists another critical point $v \in \operatorname{Int} C_{2}$ of \tilde{F}_{*}.

Suppose $v_{3} \in \operatorname{Int} C_{4}$. Since $\tilde{F}_{*}(v) \rightarrow-\infty$ as $\|v\|_{0} \rightarrow \infty$ along a $\phi_{2^{-}}$ axis, we can choose v_{1} on this ϕ_{2}-axis such that $\tilde{F}_{*}\left(v_{1}\right)<\tilde{F}_{*}\left(v_{p}\right)$. Let Γ_{1} be the set of all paths in $C_{1} \cup C_{2} \cup C_{3}$ joining v_{p} and v_{1}. We write

$$
c^{\prime}=\inf _{\gamma \in \Gamma_{1}} \sup _{\gamma} \tilde{F}_{*}(v) .
$$

We note that $\tilde{F}_{*}(v) \rightarrow \infty$ as $\|v\|_{0} \rightarrow \infty$ along a negative ϕ_{1}-axis or along a boundary ray, $c_{2}=q\left(c_{1}+1\right)\left(c_{1} \geq-1\right)$, of C_{1}, where $v=$ $v_{p}+c_{1} \phi_{1}+c_{2} \phi_{2} \in \partial C_{1}$.

Let us fix ε, η as in Deformation Lemma with $E=V, F=\tilde{F}_{*}, c=$ $c^{\prime}, K_{c^{\prime}}=\phi$ and taking $\varepsilon<\frac{1}{2}\left(c^{\prime}-\tilde{F}_{*}\left(v_{p}\right)\right)$. Taking $\gamma \in \Gamma_{1}$ such that $\sup _{\gamma} \tilde{F}_{*} \leq c^{\prime}$. From Deformation lemma($\left.[3]\right), \eta(1, \cdot) \circ \gamma \in \Gamma_{1}$ and

$$
\sup \tilde{F}_{*}(\eta(1, \cdot) \circ \gamma) \leq c^{\prime}-\varepsilon<c^{\prime}
$$

which is a contradiction. Therefore there exists a critical point v_{4} of \tilde{F}_{*} at level c^{\prime} such that $v_{4} \in C_{1} \cup C_{2} \cup C_{3}$ and $\tilde{F}_{*}\left(v_{4}\right)=c^{\prime}$. Since equation (3.1) has a unique positive solution v_{p} and no negative solution when $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$ and $t=b-\lambda_{1}(>0)$, the critical point v_{4} belongs to $\operatorname{Int} C_{2}$.

Similarly, we have that if $v_{3} \in \operatorname{Int} C_{2}$ with $\tilde{F}_{*}\left(v_{3}\right)=c$, then $\tilde{F}_{*}(v)$ has another critical point in $\operatorname{Int} C_{4}$. The critical point of \tilde{F}_{*} if and only if the critical point of \tilde{F}. Hence this completes the theorem.

Theorem 3.9. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$. For $1 \leq i \leq 4$, let $\Pi\left(C_{i}\right)=R_{i}$. Then $R_{2}=R_{1} \cup R_{4}^{*}$ and $R_{4}=R_{1} \cup R_{2}^{*}$.

Proof. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$ and $h \in V$. We note that v is a solution of the equation

$$
\Pi(v)=A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right)=h \text { in } V
$$

if and only if v is a critical point of \tilde{F}. Hence it follows from Theorem 3.8 that $R_{2} \cap R_{1} \neq \emptyset$. Since R_{2} is one of sets $R_{1} \cup R_{4}^{*}$ or $R_{3} \cup R_{2}^{*}, R_{2}$ must be $R_{1} \cup R_{4}^{*}$.

On the other hand, it follows from Theorem 3.8 that $R_{4} \cap R_{1} \neq \emptyset$. Since R_{4} is one of sets $R_{1} \cup R_{2}^{*}$ or $R_{3} \cup R_{4}^{*}, R_{4}$ must be $R_{1} \cup R_{2}^{*}$.

By Theorem 2.2, Theorem 2.3 and Theorem 3.9, we obtain the main theorem of this section.

Theorem 3.10. Let $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}$. Then we have the following.
(a) If $h \in \operatorname{Int} R_{1}$, then equation (1.2) has a positive solution and at least two change sign solutions.
(b) If $h \in \partial R_{1}$, then equation (1.2) has a positive solution and at least one change sign solution.
(c) If $h \in \operatorname{Int} R_{i}^{*}(i=2,4)$, then equation (1.2) has at least one change sign solution.
(d) If $h \in \operatorname{Int} R_{3}^{*}$, then equation (1.2) has only the negative solution.
(e) If $h \in \partial R_{3}$, then equation (1.2) has a negative solution.

References

[1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J.Funct. Analysis, 14 (1973), 349-381.
[2] A. Castro and A.C. Lazer, applications of a max-min principle, Rev. Colombian Mat., 10 (1979), 141-149
[3] Q.H. Choi and K.P. Choi paper The Existence of Solutions of an AmbrosettiProdi Type Nonlinear Elliptic Equation, Far East J. Dynamical Systems, 4(1) (2002), 39-50.
[4] Q.H. Choi, T.Jung, and P.J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, Applicable Analysis, 50 (1993), 71-90.
[5] E.N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures et Appl., 57 (1978), 351-366.
[6] A.C. Lazer and P.J. McKenna, Critical points theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. in P.D.E., 11(1986), 1653-1676.
[7] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conference board of the mathematical sciences regional conference series in mathematics, A.M.S., No. 65 (1988).
[8] S. Solimini, Multiplicity results for a nonlinear Dirichlet problem, Proc. Royal Soc. Edinburgh, 96A, 1984.

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail: kpchoi@inha.ac.kr

