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CRITICAL POINTS AND MULTIPLE
SOLUTIONS OF A NONLINEAR

ELLIPTIC BOUNDARY VALUE PROBLEM

Kyeongpyo Choi

Abstract. We consider a semilinear elliptic boundary value prob-
lem with Dirichlet boundary condition Au+bu+−au− = t1φ1+t2φ2

in Ω and φn is the eigenfuction corresponding to λn(n = 1, 2, · · · ).
We have a concern with the multiplicity of solutions of the equation
when λ1 < a < λ2 < b < λ3.

1. Introduction

Let Ω be a bounded set in Rn(n ≥ 1) with smooth boundary ∂Ω
and let A denote the elliptic operator

(1.1) A =
∑

1≤i,j≤n

ai,j(x)DiDj ,

where aij = aji∈ C∞(Ω̄).
We consider a semilinear elliptic equation with Dirichlet boundary

condition

(1.2)
Au + bu+ − au− = h(x) in Ω.

u = 0 on ∂Ω.

Here A is a second order elliptic differential operator and a mapping
from L2(Ω) into itself with compact inverse, with eigenvalues −λi, each
repeated as often as multiplicity. We denote φn to be the eigenfuction
corresponding to λn(n = 1, 2, · · · ), and φ1 is the eigenfuction such that
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φ1 > 0 in Ω and the set {φn| n = 1, 2, 3 · · · } is an orthonormal set in
H, where H is a Hilbert space with inner product

(u, v) =
∫

Ω

uv, u, v ∈ L2(Ω).

We suppose that λ1 < a < λ2 < b < λ3. Under these assumptions,
we have a concern with the multiplicity of solutions of (1.2) when h
is generated by two eigenfunctions φ1 and φ2. Then equation (1.2) is
equivalent to

(1.3) Au + bu+ − au− = h in H,

where h = t1φ1 + t2φ2(t1, t2 ∈ R). Hence we will study the equation
(1.3). To study equation (1.3), We use the contraction mapping prin-
ciple to reduce the problem from an infinite dimensional space in H to
a finite dimensional one.

Let V be the two dimensional subspace of H spanned by {φ1, φ2}
and W be the orthogonal complement of V in H. Let P be an or-
thogonal projection H onto V. Then every element u ∈ H is expressed
as

u = v + w,

where v = Pu, w = (I − P )u. Hence equation (1.3) is equivalent to a
system

(1.4) Aw + (I − P )(b(v + w)+ − a(v + w)−) = 0

(1.5) Av + P (b(v + w)+ − a(v + w)−) = t1φ1 + t2φ2.

Here we look on (1.4) and (1.5) as a system of two equation in the two
unknowns v and w. We can see that for fixed v ∈ V, (1.4) has a unique
solution w = θ(v). Furthermore, θ(v) is Lipschitz continuous(with re-
spect to the L2-norm) in terms of v.

The study of the multiplicity of solution of (1.3) is reduced to the
study of the multiplicity of solutions of an equivalent problem

(1.6) Av + P (b(v + θ(v))+ − a(v + θ(v))−) = t1φ1 + t2φ2
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defined on the two dimensional subspace V spanned by {φ1, φ2}.
While one feels intuitively that (1.6) ought to be easier to solve than

(1.3), there is the disadvantage of an implicitly defined term θ(v) in
the equation. However, in our case, it turns out that we know θ(v) for
some special v′s.

If v ≥ 0 or v ≤ 0, then θ(v) ≡ 0. For example, let us take v ≥ 0 and
θ(v) = 0. Then equation (1.4) reduces to

A0 + (I − P )(bv+ − av−) = 0,

which is satisfied because v+ = v, v− = 0 and (I − P )v = 0, since
v ∈ V. Since the subspace V is spanned by {φ1, φ2} and φ1 is a positive
eigenfuction, there exists a cone C1 defined by

C1 = {v = c1φ1 + c2φ2 | c1 ≥ 0, |c2| ≤ qc1}
for some q > 0 so that v ≥ 0 for all v ∈ C1 and a cone C3 defined by

C3 = {v = c1φ1 + c2φ2 | c1 ≤ 0, |c2| ≤ q|c1|}
so that v ≤ 0 for all v ∈ C3.

Thus, even if we do not know θ(v) for all v ∈ V . we know θ(v) ≡ 0
for v ∈ C1 ∪ C3.

2. The existence of solutions and source terms

Now we define a map Π : V → V given by

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−), v ∈ V.

Then, we can obtain that the following theorem.

Theorem 2.1. Π(cv) = cΠ(v) for c ≥ 0.

We investigate the image of the cones C1, C3 under Π. First, we
consider the image of cone C1. If v = c1φ1 + c2φ2 ≥ 0, we have

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−)

= −c1λ1φ1 − c2λ2φ2 + b(c1φ1 + c2φ2)

= c1(b− λ1)φ1 + c2(b− λ2)φ2.
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Thus the image of the rays c1φ1 ± qc1φ2(c1 ≥ 0) can explicitly calcu-
lated and they are

(2.1) c1(b− λ1)φ1 ± qc1(b− λ2)φ2 (c1 ≥ 0).

Therefore If λ1 < a < λ2 < b < λ3, then Π maps C1 onto the cone

R1 =
{

d1φ1 + d2φ2

∣∣∣∣ d1 ≥ 0, |d2| ≤ q

(
b− λ2

b− λ1

)
d1

}
.

Second, similarly, the image of the rays −c1φ1 ± qc1φ2(c1 ≥ 0) are

(2.2) c1(λ1 − a)φ1 ± qc1(λ2 − a)φ2 (c1 ≥ 0).

Therefore, if λ1 < a < λ2 < b < λ3, then Π maps the cone C3 onto
the cone

R3 =
{

d1φ1 + d2φ2

∣∣∣∣ d1 ≤ 0, |d2| ≤ q

(
λ2 − a

λ1 − a

)
d1

}
.

Now we set

C2 = {v = c1φ1 + c2φ2 | c2 ≥ 0, c2 ≥ q|c1|},

C4 = {v = c1φ1 + c2φ2 | c2 ≤ 0, |c2| ≥ q|c1|},
Then the union of C1, C2, and C3, C4 are the space V.

We remember the map Π : V → V given by

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−), v ∈ V.

Let Ri(1 ≤ i ≤ 4) be the image of Ci(1 ≤ i ≤ 4) under Π.

Theorem 2.2. Let λ1 < a < λ2 < b < λ3.
(a) If h belongs to R1, then equation (1.2) has a positive solution

and no negative solution. If h belongs to R3, then equation (1.2) has
a negative solution.

(b) For i = 1, 3, the image of Πi is Ri and Πi : Ci → Ri is bijective.
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Proof. (a) From (2.1) and (2.2), if h belongs to R1, the equation
Π(v) = t1φ1 + t2φ2 has a positive solution in the cone C1, namely

t1
b−λ1

φ1 + t2
b−λ2

φ2, and if h belongs to R3, the equation Π(v) = t1φ1 +
t2φ2 has a negative solution in C3, namely − t1

λ1−aφ1 − t2
λ2−aφ2.

(b) We consider the restriction Π1. By (2.1), the restriction Π1 maps
C1 onto R1. Let l1 be the segment defined by

l1 =
{

φ1 + d2φ2

∣∣∣∣ |d2| ≤ q

(
b− λ2

b− λ1

)}
.

Then the inverse image Π−1
1 (l1) is a segment

L1 =
{

1
b− λ1

(φ1 + c2φ2)
∣∣∣∣ |c2| ≤ q

}
.

It follow from Theorem 2.1 that Π1 : C1 → R1 is bijective. Similarly,
Π3 : C3 → R3 is also a bijection. ¤

We set

C2 = {v = c1φ1 + c2φ2 | c2 ≥ 0, c2 ≥ q|c1|},

C4 = {v = c1φ1 + c2φ2 | c2 ≤ 0, |c2| ≥ q|c1|}.
Then the union of C1, C2, and C3, C4 is the space V. Theorem 2.1
means that the images Π(C2) and Π(C4) are the cones in the plane V.
Before we investigate the images Π(C2) and Π(C4), we set

R∗2 =
{

d1φ1 + d2φ2 | −q−1 | λ1 − a

λ2 − a
| d2 ≤ d1 ≤ q−1 | b− λ1

b− λ2
| d2

}
,

where d2 ≥ 0. And let

R∗4 =
{

d1φ1 + d2φ2 | −q−1 | λ1 − a

λ2 − a
| |d2| ≤ d1 ≤ q−1 | b− λ1

b− λ2
| |d2|

}
,

where d2 ≤ 0. Then the union of R1, R
∗
2, R3, R

∗
4 is the plane V.
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To investigate a relation between the multiplicity of solutions and
source terms in a nonlinear elliptic differential equation

Au + bu+ − au− = h in H,

we consider the restriction Π|Ci
(1 ≤ i ≤ 4) of Π to the cone Ci. Let

Πi = Π|Ci
, i.e.,

Πi : Ci → V.

We have investigated next theorem in [3]

Theorem 2.3. For i = 2, 4, if we let Πi(Ci) = Ri, then R2 is one
of sets R1 ∪R∗4 or R∗2 ∪R3, and R4 is one of sets R3 ∪R∗4 or R1 ∪R∗2.
Furthermore the restriction Πi maps Ci onto Ri.

3. Critical points and multiplicity results

We investigate the multiplicity of solutions of a nonlinear elliptic
differential equation

(3.1) Au + bu+ − au− = tφ1 in H,

where λ1 < a < λ2 < b < λ3 and t > 0.
Above all, We will investigate using critical point theory that R2 =

R1 ∪R∗4 and R4 = R1 ∪R∗2.
Henceforth, let F denote the functional defined by

(3.2) F (u) =
∫

Ω

[
1
2
|∇u|2 −G(u) + tφ1u

]
dx,

where G(u) = 1
2

(
b(u+)2 + a(u−)2

)
and u ∈ E. Then,

DF (u)y = F ′(u)y =
∫

Ω

(∇u · ∇y − g(u)y + tφ1y) dx for all y ∈ E

and solutions of (3.1) coincide with solutions of

(3.3) DF (u) = 0,

where g(u) = G′(u) = bu+ − au−.
Therefore, we shall investigate critical points of F. We know the

following theorem.
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Theorem 3.1. Let λ1 < a < λ2 < b < λ3, h ∈ V. Let v ∈ V be
given. Then there exists a unique solution z ∈ W of the equation

(3.4) Az + (I − P )(b(v + z)+ − a(v + z)− − h) = 0 in W.

If z = θ(v), then θ is continuous on V and we have DF (v+θ(v))(w) = 0
for all w ∈ W. In particular θ(v) satisfies a uniform Lipschitz in v with

respect to the L2-norm. If F̃ : V → R is defined by F̃ (v) = F (v+θ(v)),
then F̃ the has continuous Frechét derivative DF̃ with respect to v and

DF̃ (v)(r) = DF (v + θ(v))(r) for all r ∈ V.

If v0 is a critical point of F̃ , then v0 + θ(v0) is a solution of (3.1) and

conversely every solution of (3.1) is DF̃ (v0) = 0.

Theorem 3.2. Let λ1 < a < λ2 < b < λ3. Then we have:
(a) Let t = b−λ1(h = (b−λ1)φ1). Then equation (3.1) has a positive

solution vp and there exists a small open neighborhood Bp of vp in C1

such that in Bp, vp is a strict local point of maximum of F̃ .
(b) t = λ1 − a(h = (λ1 − a)φ1). Then equation (3.1) has a negative

solution vn and there exists a small open neighborhood Bn of vn in C3

such that in Bn, vn is a saddle point of F̃ .

Proof. (a) Let t = b− λ1(h = (b− λ1)φ1). Then equation (3.1) has
a up = φ1 which is of the form up = vp + θ(vp). (in this case θ(vp) = 0)
and I + θ, where I is an identity map on V, is continuous. Since vp is
in the interior of C1, there exists a small open neighborhood Bp of vp

in C1. We note that θ(v) = 0 in Bp. Therefore, if v = vp + v∗ ∈ Bp,
then we have

F̃ (v) = F̃ (vp + v∗)

=
∫

Ω

[
1
2
(|∇(vp + v∗)|2 − b((vp + v∗)+)2 − a((vp + v∗)−)2)

+ h(vp + v∗)
]
dx

=
1
2

∫

Ω

(|∇v∗|2 − bv∗2)dx +
∫

Ω

[∇vp · ∇v∗ − bvpv
∗ + hv∗] dx

+
∫

Ω

[
1
2
(|∇vp|2 − bv2

p) + hvp

]
dx

=
1
2

∫

Ω

(|∇v∗|2 − bv∗2)dx +
∫

Ω

[∇vp · ∇v∗ − bvpv
∗ + hv∗] dx + C,
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where C =
∫
Ω

[
1
2 (|∇vp|2 − bv2

p) + hvp

]
dx = F (up) = F̃ (vp).

If v ∈ V and v = c1φ1 + c2φ2, then we have

||v||20 =
∫

Ω

|∇v|2dx =
2∑

i=1

c2
i λi < λ2

2∑

i=1

c2
i

= λ2

∫

Ω

v2dx = λ2||v||2

(3.7)

Let v∗ = c1φ1 + c2φ2 and let v = vp + v∗ ∈ Bp. Then

∫

Ω

[∇vp · ∇v∗ − bvpv
∗ + hv∗] dx = 0.

By (3.7),

F̃ (v)− F̃ (vp) =
1
2

∫

Ω

(|∇v∗|2 − bv∗2)dx < (λ2 − b)
∫

Ω

v2dx.

Since λ2 < b, it follows that for t = b− λ1, vp is a strict local point of
maximum for F̃ (v).

(b) Let t = λ1−a(h = (λ1−a)φ1). Then equation (3.1) has a negative
solution un = −φ1 which is of the form un = vn + θ(vn), where θ(vn)
and −I + θ is continuous in V. Since vn is the interior, IntC3, of C3.
We note that θ(v) = 0 in Bn. Therefore, if v = vn + v∗ ∈ Bn, then we
have to calculate

F̃ (v)− F̃ (vn) =
1
2

∫

Ω

(|∇v∗|2 − av2
∗)dx

=
1
2
(c2

1(λ1 − a) + c2
2(λ2 − a)).

The above equation implies that vn is a saddle point of F̃ . ¤

Therefore, by Theorem 3.2 and [7], we can obtain the following
theorem.
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Theorem 3.3. Let h ∈ V and let λ1 < a < λ2 < b < λ3. For fixed
t the functional F̃ , defined on V, satisfies the Palais-Smale condition :
Any sequence {vn}∞1 ⊂ V for which F̃ (vn) is bounded and DF̃ (vn) → 0
possesses a convergent subsequence.

Let V̂ be the vector space spanned by an eigenfunction φ2. Let Ŵ
denote the orthogonal complement of V̂ and let P̂ : H → V̂ denote
the orthogonal projection of H onto V̂ . By the use of (3.1),(3.2) and
Theorem 3.1, we have the following statements.

Given v̂ ∈ V̂ and t ∈ R, there exists a unique solution ẑ = θ̂(v̂) of

Aẑ + (I − P̂ )g(v̂ + ẑ) = tφ1, ẑ|∂Ω = 0,

where ẑ ∈ Ŵ .

If ẑ = θ̂(v̂), then θ̂ is continuous on V̂ . Let F̂0(v̂) denote the func-
tional defined by F̂0(v̂) = F (v̂+θ̂(v̂)). Then F̂0 has a continuous Frechét
derivative DF̂0 with respect to v̂ and u is a solution of equation (3.1)
if and only if u = v̂ + θ̂(v̂) and DF̂0(v̂) = 0, where v̂ = P̂ u. By The-
orem3.3, for each fixed t the functional F̂0 satisfies the Palais-Smale
condition.

By Theorem 3.1, the functional F̂0(v̂) satisfy the following lemma.

Lemma 3.4. If t > 0 there exists α = α(t) > 0 such that if v̂ ∈ V̂

and ‖v̂‖0 < α(t), then θ̂(v̂) = tφ1/(b − λ1) for t > 0 and the point

v̂ = 0 is a strict local point of maximum for F̂0.

Lemma 3.5. For k > 0 and t = 0, F̂0(kv̂) = k2F̂0(v̂).

Proof. Since g is positively homogeneous of degree one, it follows
that

if v̂ ∈ V̂ , ẑ ∈ Ŵ and Aẑ + (I − P̂ )g(v̂ + ẑ) = 0, ẑ|∂Ω = 0, then
A(kẑ) + (I − P̂ )g(kv̂ + kẑ) = 0. Therefore, θ̂(kv̂) = kθ̂(v̂). We see

that F0(ku) = k2F (u) for u ∈ H and k > 0. Hence, F̂0(kv̂) = F (kv̂ +
θ̂(kv̂)) = k2F (v̂ + θ̂(v̂)) = k2F̂0(v̂). ¤
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Lemma 3.6. Let λ1 < a < λ2 < b < λ3. Then we have:
(a) For t = 0, F̂0(v̂) > 0 for all v̂ ∈ V̂ with v̂ 6= 0.

(b) For t > 0, F̂0(v̂) →∞ as ‖v̂‖0 →∞.

(c) For fixed t > 0, F̃ (v) →∞ along a φ2-axis.

Proof. With Lemma 3.5 and [7], we have (a) and (b).
(c) For fixed t we see that F (v̂ + θ̂(v̂)) = F (v + θ(v)). Let F̃ |V̂ be

the restriction of F̃ to the V̂ . Then F̃ |V̂ = F̂0. By (b), if t > 0, then
F̃ (v) →∞ as along a φ2-axis. ¤

Lemma 3.6. Let λ1 < a < λ2 < b < λ3 and t = b − λ1 and
q2 | λ2−a |>| λ1−a | . Then we have F̃ (v) → +∞ as ‖v‖0 →∞ along
a boundary ray of C3.

Proof. Let v = vp + v∗ ∈ C3 and v∗ = c1φ1 + c2φ2. Then we have

F̃ (v)

=
∫

Ω

[
1
2
(|∇(vp + v∗)|2 − a((vp + v∗)−)2)

+ (b− λ1)φ1(vp + v∗)
]
dx.

We note that vp + v∗ ∈ ∂C3 if and only if c2 = q(c1 + 1), c1 ≤ −1. It
can be shown easily the following holds

F̃ (v) =
1
2
((λ1 − a)c2

1 + q2(λ2 − a)c2
1)

+ (q2(λ2 − a) + (b− a))c1 +
1
2
((λ2 − a)q2 + (b− a)) + C,

where C =
∫
Ω

[
1
2 (|∇vp|2 − bv2

p) + (b− λ1)φ1vp

]
dx. Hence if v ∈ ∂C3,

then we have F̃ (v) → +∞ as c1 → −∞. ¤

Theorem 3.8. Let λ1 < a < λ2 < b < λ3 and t = b − λ1. Then
F̃ (v) has a critical point in IntC1, and at least one critical point in
IntC2, and at least one critical point in IntC4.
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Proof. We denote that −F̃ (v) = F̃∗(v). By Theorem 3.2 (a), if t =
b−λ1, then there exists a small open neighborhood Bp of vp in C1 such
that in Bp, vp = φ1 is a strict local point of maximum for F̃ (v). Hence
vp is a strict local point of minimum for F̃∗(v) in C1. By Lemma 3.6
(c), F̃∗(v) → −∞ as ‖v‖0 → ∞ along a φ2-axis. and F̃∗ ∈ C1(V,R)
satisfies the Palais-Smale condition.

Since F̃∗(v) → −∞ as ‖v‖0 →∞ along a φ2-axis, we can choose v0

on φ2-axis such that F̃∗(v0) < F̃∗(vp). Let Γ be the set of all paths in
V joining vp and v0. We write

c = inf
γ∈Γ

sup
γ

F̃∗(v).

The fact that in Bp, vp is a strict local point of minimum of F̃∗, the
fact that F̃∗(v) → −∞ as ‖v‖0 → ∞ along a φ2-axis, the fact F̃∗
satisfies the Palais-Smale condition, and the Mountain Pass Theorem
imply that

c = inf
γ∈Γ

sup
γ

F̃∗(v)

is a critical value of F̃∗(see Mountain Pass Theorem and [1, 7]). When
λ1 < a < λ2 < b < λ3 and t = b − λ1, equation (3.1) has a unique
positive solution vp and no negative solution. Hence there exists a
critical point v3, in Int(C2 ∪ C4), of F̃∗ such that

F̃∗(v3) = c.

We prove that if v3 ∈ IntC4 such that F̃∗(v3) = c, then there exists
another critical point v ∈ IntC2 of F̃∗.

Suppose v3 ∈ IntC4. Since F̃∗(v) → −∞ as ‖v‖0 → ∞ along a φ2-
axis, we can choose v1 on this φ2-axis such that F̃∗(v1) < F̃∗(vp). Let
Γ1 be the set of all paths in C1 ∪ C2 ∪ C3 joining vp and v1. We write

c′ = inf
γ∈Γ1

sup
γ

F̃∗(v).

We note that F̃∗(v) → ∞ as ‖v‖0 → ∞ along a negative φ1-axis or
along a boundary ray, c2 = q(c1 + 1)(c1 ≥ −1), of C1, where v =
vp + c1φ1 + c2φ2 ∈ ∂C1.
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Let us fix ε, η as in Deformation Lemma with E = V, F = F̃∗, c =
c′,Kc′ = φ and taking ε < 1

2 (c′ − F̃∗(vp)). Taking γ ∈ Γ1 such that
supγF̃∗ ≤ c′. From Deformation lemma([3]), η(1, ·) ◦ γ ∈ Γ1 and

sup F̃∗(η(1, ·) ◦ γ) ≤ c′ − ε < c′,

which is a contradiction. Therefore there exists a critical point v4 of F̃∗
at level c′ such that v4 ∈ C1 ∪C2 ∪C3 and F̃∗(v4) = c′. Since equation
(3.1) has a unique positive solution vp and no negative solution when
λ1 < a < λ2 < b < λ3 and t = b−λ1(> 0), the critical point v4 belongs
to IntC2.

Similarly, we have that if v3 ∈ IntC2 with F̃∗(v3) = c, then F̃∗(v)
has another critical point in IntC4. The critical point of F̃∗ if and only
if the critical point of F̃ . Hence this completes the theorem. ¤

Theorem 3.9. Let λ1 < a < λ2 < b < λ3. For 1 ≤ i ≤ 4, let
Π(Ci) = Ri. Then R2 = R1 ∪R∗4 and R4 = R1 ∪R∗2.

Proof. Let λ1 < a < λ2 < b < λ3 and h ∈ V. We note that v is a
solution of the equation

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−) = h in V

if and only if v is a critical point of F̃ . Hence it follows from Theorem
3.8 that R2 ∩ R1 6= ∅. Since R2 is one of sets R1 ∪ R∗4 or R3 ∪ R∗2, R2

must be R1 ∪R∗4.
On the other hand, it follows from Theorem 3.8 that R4 ∩ R1 6= ∅.

Since R4 is one of sets R1 ∪R∗2 or R3 ∪R∗4, R4 must be R1 ∪R∗2. ¤

By Theorem 2.2, Theorem 2.3 and Theorem 3.9, we obtain the main
theorem of this section.

Theorem 3.10. Let λ1 < a < λ2 < b < λ3. Then we have the
following.

(a) If h ∈ IntR1, then equation (1.2) has a positive solution and at
least two change sign solutions.

(b) If h ∈ ∂R1, then equation (1.2) has a positive solution and at
least one change sign solution.

(c) If h ∈ IntR∗i (i = 2, 4), then equation (1.2) has at least one change
sign solution.

(d) If h ∈ IntR∗3, then equation (1.2) has only the negative solution.
(e) If h ∈ ∂R3, then equation (1.2) has a negative solution.
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