WEAK* QUASI-SMOOTH α -STRUCTURE OF SMOOTH TOPOLOGICAL SPACES

WON KEUN MIN AND CHUN-KEE PARK*

ABSTRACT. In this paper we introduce the concepts of several types of weak* quasi-smooth α -compactness in terms of the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set in smooth topological spaces and investigate some of their properties.

1. Introduction

Badard [1] introduced the concept of a smooth topological space which is a generalization of Chang's fuzzy topological space [2]. Many mathematical structures in smooth topological spaces were introduced and studied. Particularly, Gayyar, Kerre and Ramadan [5] and Demirci [3, 4] introduced the concepts of smooth closure and smooth interior of a fuzzy set and several types of compactness in smooth topological spaces and obtained some of their properties. In [6] we introduced the concepts of smooth α -closure and smooth α -interior of a fuzzy set which are generalizations of smooth closure and smooth interior of a fuzzy set defined in [3] and also introduced several types of α -compactness in smooth topological spaces and obtained some of their properties. In [7] we introduced the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set in smooth topological spaces and investigated some of their properties.

In this paper we introduce the concepts of several types of weak* quasi-smooth α -compactness in terms of the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set in smooth topological spaces and investigate some of their properties.

Received November 7, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 03E72.

Key words and phrases: smooth topology, weak smooth α -closure, weak smooth α -interior, weak* quasi-smooth α -compactness.

^{*} Corresponding author

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. I^X will denote the set of all fuzzy sets of X. 0_X and 1_X will denote the characteristic functions of ϕ and X, respectively.

A smooth topological space (s.t.s.) [8] is an ordered pair (X, τ) , where X is a non-empty set and $\tau: I^X \to I$ is a mapping satisfying the following conditions:

- (O1) $\tau(0_X) = \tau(1_X) = 1$;
- (O2) $\forall A, B \in I^X, \ \tau(A \cap B) \ge \tau(A) \land \tau(B);$
- (O3) for any subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau(\bigcup_{i \in J} A_i) \ge \land_{i \in J} \tau(A_i)$. Then the mapping $\tau : I^X \to I$ is called a smooth topology on X. The number $\tau(A)$ is called the degree of openness of A.

A mapping $\tau^*:I^X\to I$ is called a smooth cotopology [8] if the following three conditions are satisfied:

- (C1) $\tau^*(0_X) = \tau^*(1_X) = 1;$
- (C2) $\forall A, B \in I^X, \ \tau^*(A \cup B) \ge \tau^*(A) \land \tau^*(B);$
- (C3) for every subfamily $\{A_i: i \in J\} \subseteq I^X, \ \tau^*(\cap_{i \in J} A_i) \ge \bigwedge_{i \in J} \tau^*(A_i).$

If τ is a smooth topology on X, then the mapping $\tau^*: I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is a smooth cotopology on X. Conversely, if τ^* is a smooth cotopology on X, then the mapping $\tau: I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is a smooth topology on X [8].

Demirci [3] introduced the concepts of smooth closure and smooth interior in smooth topological spaces as follows:

Let (X,τ) be a s.t.s. and $A \in I^X$. Then the τ -smooth closure (resp., τ -smooth interior) of A, denoted by \bar{A} (resp., A^o), is defined by $\bar{A} = \cap \{K \in I^X : \tau^*(K) > 0, A \subseteq K\}$ (resp., $A^o = \cup \{K \in I^X : \tau(K) > 0, K \subseteq A\}$). Demirci [4] defined the families $W(\tau) = \{A \in I^X : A = A^o\}$ and $W^*(\tau) = \{A \in I^X : A = \overline{A}\}$, where (X,τ) is a s.t.s. Note that $A \in W(\tau)$ if and only if $A^c \in W^*(\tau)$.

Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is called smooth continuous with respect to τ and σ [8] if $\tau(f^{-1}(A)) \geq \sigma(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is called weakly smooth continuous with respect to τ and σ [8] if $\sigma(A) > 0 \Rightarrow \tau(f^{-1}(A)) > 0$ for every $A \in I^Y$. In this paper, a weakly smooth

continuous function with respect to τ and σ is called a quasi-smooth continuous function with respect to τ and σ .

A function $f: X \to Y$ is smooth continuous with respect to τ and σ if and only if $\tau^*(f^{-1}(A)) \geq \sigma^*(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is weakly smooth continuous with respect to τ and σ if and only if $\sigma^*(A) > 0 \Rightarrow \tau^*(f^{-1}(A)) > 0$ for every $A \in I^Y$ [8].

A function $f: X \to Y$ is called smooth open (resp., smooth closed) with respect to τ and σ [8] if

$$\tau(A) \le \sigma(f(A)) \text{ (resp., } \tau^*(A) \le \sigma^*(f(A)))$$

for every $A \in I^X$.

A function $f: X \to Y$ is called smooth preserving (resp., strict smooth preserving) with respect to τ and σ [5] if

$$\sigma(A) \ge \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \ge \tau(f^{-1}(B))$$
(resp., $\sigma(A) > \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \tau(f^{-1}(B))$)

for every $A, B \in I^Y$.

If $f: X \to Y$ is a smooth preserving function (resp., a strict smooth preserving function) with respect to τ and σ , then $\sigma^*(A) \ge \sigma^*(B)$ if and only if $\tau^*(f^{-1}(A)) \ge \tau^*(f^{-1}(B))$ (resp., $\sigma^*(A) > \sigma^*(B)$ if and only if $\tau^*(f^{-1}(A)) > \tau^*(f^{-1}(B))$) for every $A, B \in I^Y$ [5].

A function $f: X \to Y$ is called smooth open preserving (resp., strict smooth open preserving) with respect to τ and σ [5] if $\tau(A) \ge \tau(B) \Rightarrow \sigma(f(A)) \ge \sigma(f(B))$ (resp., $\tau(A) > \tau(B) \Rightarrow \sigma(f(A)) > \sigma(f(B))$) for every $A, B \in I^X$.

Let (X,τ) be a s.t.s., $\alpha \in [0,1)$ and $A \in I^X$. The τ -smooth α -closure (resp., τ -smooth α -interior) of A, denoted by \overline{A}_{α} (resp., A_{α}^{o}), is defined by $\overline{A}_{\alpha} = \cap \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), A \subseteq K\}$ (resp., $A_{\alpha}^{o} = \cup \{K \in I^X : \tau(K) > \alpha \tau(A), K \subseteq A\}$) [6]. In [7] we defined the families $W_{\alpha}(\tau) = \{A \in I^X : A = A_{\alpha}^{o}\}$ and $W_{\alpha}^*(\tau) = \{A \in I^X : A = \overline{A}_{\alpha}\}$, where (X,τ) is a s.t.s. Note that $A \in W_{\alpha}(\tau) \Leftrightarrow A^c \in W_{\alpha}^*(\tau)$.

3. Types of weak* quasi-smooth α -compactness

In this section, we introduce the concepts of several types of weak* quasi-smooth α -compactness in smooth topological spaces and investigate some of their properties.

DEFINITION 3.1[7]. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. The weak τ -smooth α -closure (resp., weak τ -smooth α -interior) of A, denoted by $wcl_{\alpha}(A)$ (resp., $wint_{\alpha}(A)$), is defined by $wcl_{\alpha}(A) = \cap \{K \in I^X : K \in W^*_{\alpha}(\tau), A \subseteq K\}$ (resp., $wint_{\alpha}(A) = \cup \{K \in I^X : K \in W_{\alpha}(\tau), K \subseteq A\}$).

We define the families $W_{w\alpha}(\tau) = \{A \in I^X : A = wint_{\alpha}(A)\}$ and $W_{w\alpha}^*(\tau) = \{A \in I^X : A = wcl_{\alpha}(A)\}$, where (X, τ) is a s.t.s. and $\alpha \in [0, 1)$. Then

```
A \in W_{w\alpha}(\tau) \Leftrightarrow A^c \in W_{w\alpha}^*(\tau),
A \in W_{\alpha}(\tau) \Rightarrow A \in W(\tau) \Rightarrow A \in W_{w\alpha}(\tau),
A \in W_{\alpha}^*(\tau) \Rightarrow A \in W^*(\tau) \Rightarrow A \in W_{w\alpha}^*(\tau).
```

DEFINITION 3.2[7]. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak smooth α -continuous with respect to τ and σ if $A \in W_{\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W_{\alpha}(\tau)$ for every $A \in I^Y$.

DEFINITION 3.3. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak* smooth α -continuous with respect to τ and σ if $A \in W_{w\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W_{w\alpha}(\tau)$ for every $A \in I^Y$.

Let (X,τ) and (Y,σ) be two smooth topological spaces. A function $f:X\to Y$ is weak* smooth α -continuous with respect to τ and σ if and only if $A\in W^*_{w\alpha}(\sigma)\Rightarrow f^{-1}(A)\in W^*_{w\alpha}(\tau)$ for every $A\in I^Y$.

DEFINITION 3.4. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak* smooth α -open (resp., weak* smooth α -closed) with respect to τ and σ if $A \in W_{w\alpha}(\tau) \Rightarrow f(A) \in W_{w\alpha}(\sigma)$ (resp., $A \in W_{w\alpha}^*(\tau) \Rightarrow f(A) \in W_{w\alpha}^*(\sigma)$) for every $A \in I^X$.

THEOREM 3.5. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. If a function $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ , then $f: X \to Y$ is weak* smooth α -continuous with respect to τ and σ .

Proof. Let $f: X \to Y$ be a weak smooth α -continuous function with respect to τ and σ . Then by Theorem 3.10[7] $f^{-1}(wint_{\alpha}(A)) \subseteq wint_{\alpha}(f^{-1}(A))$ for every $A \in I^{Y}$. Let $A \in W_{w\alpha}(\sigma)$, i.e, $A = wint_{\alpha}A$. Then $f^{-1}(A) = f^{-1}(wint_{\alpha}A) \subseteq wint_{\alpha}(f^{-1}(A))$. From the definition of weak smooth α -interior we have $wint_{\alpha}(f^{-1}(A)) \subseteq f^{-1}(A)$. Hence $f^{-1}(A) = wint_{\alpha}(f^{-1}(A))$, i.e., $f^{-1}(A) \in W_{w\alpha}(\tau)$. Therefore $f: X \to Y$ is weak* smooth α -continuous with respect to τ and σ .

DEFINITION 3.6. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak* quasi-smooth nearly α -compact if for every family $\{A_i : i \in J\}$ in $W_{w\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_X$.

DEFINITION 3.7. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak* quasi-smooth almost α -compact if for every family $\{A_i : i \in J\}$ in $W_{w\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wcl_{\alpha}(A_i) = 1_X$.

Note that (X, τ) is weak* quasi-smooth almost α -compact $\Rightarrow (X, \tau)$ is weak* smooth almost compact $\Rightarrow (X, \tau)$ is weak* smooth almost α -compact.

THEOREM 3.8. Let (X,τ) be a s.t.s. and let $\alpha \in [0,1)$. If (X,τ) is weak* smooth compact, then (X,τ) is weak* quasi-smooth nearly α -compact.

Proof. Let $\{A_i : i \in J\}$ be a family in $W_{w\alpha}(\tau)$ covering X. Since (X,τ) is weak* smooth compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} A_i = 1_X$. Since $A_i \in W_{w\alpha}(\tau)$ for each $i \in J$, $A_i = wint_{\alpha}(A_i)$ for each $i \in J$. From Theorem 3.3 and 3.4[7] we have $wint_{\alpha}(A_i) \subseteq wint_{\alpha}(wcl_{\alpha}(A_i))$ for each $i \in J$. Thus $1_X = \bigcup_{i \in J_0} A_i = \bigcup_{i \in J_0} wint_{\alpha}(A_i) \subseteq \bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i))$, i.e., $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_X$. Hence (X,τ) is weak* quasi-smooth nearly α -compact.

THEOREM 3.9. Let $\alpha \in [0,1)$. Then a weak* quasi-smooth nearly α -compact s.t.s. (X,τ) is weak* quasi-smooth almost α -compact.

Proof. Let (X,τ) be a weak* quasi-smooth nearly α -compact s.t.s. Then for every family $\{A_i: i \in J\}$ in $W_{w\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_X$. Since $wint_{\alpha}(wcl_{\alpha}(A_i)) \subseteq wcl_{\alpha}(A_i)$ for each $i \in J$ by Theorem 3.3[7], $1_X = \bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) \subseteq \bigcup_{i \in J_0} wcl_{\alpha}(A_i)$. Thus $\bigcup_{i \in J_0} wcl_{\alpha}(A_i) = 1_X$. Hence (X,τ) is weak* quasi-smooth almost α -compact.

THEOREM 3.10. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$ and $f: X \to Y$ a surjective and weak smooth α -continuous function with respect to τ and σ . If (X,τ) is weak* quasi-smooth almost α -compact, then so is (Y,σ) .

Proof. Let $\{A_i: i \in J\}$ be a family in $W_{w\alpha}(\sigma)$ covering Y, i.e., $\cup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \cup_{i \in J} f^{-1}(A_i)$. Since f is weak smooth α -continuous with respect to τ and σ , f is weak* smooth α -continuous with respect to τ and σ by Theorem 3.5. Hence $f^{-1}(A_i) \in W_{w\alpha}(\tau)$ for each $i \in J$. Since (X, τ) is weak* quasi-smooth almost α -compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} wcl_{\alpha}(f^{-1}(A_i)) = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\cup_{i \in J_0} wcl_{\alpha}(f^{-1}(A_i))) = \cup_{i \in J_0} f(wcl_{\alpha}(f^{-1}(A_i)))$. Since $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ , from Theorem 3.10[7] we have $wcl_{\alpha}(f^{-1}(A)) \subseteq f^{-1}(wcl_{\alpha}(A))$ for every $A \in I^Y$. Hence $1_Y = \cup_{i \in J_0} f(wcl_{\alpha}(f^{-1}(A_i))) \subseteq \cup_{i \in J_0} f(f^{-1}(wcl_{\alpha}(A_i))) = \cup_{i \in J_0} wcl_{\alpha}(A_i)$, i.e., $\cup_{i \in J_0} wcl_{\alpha}(A_i) = 1_Y$. Thus (Y, σ) is weak* quasi-smooth almost α -compact.

THEOREM 3.11. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$ and $f: X \to Y$ a surjective, weak smooth α -continuous and weak smooth α -open function with respect to τ and σ . If (X,τ) is weak* quasi-smooth nearly α -compact, then so is (Y,σ) .

Proof. Let $\{A_i : i \in J\}$ be a family in $W_{w\alpha}(\sigma)$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \bigcup_{i \in J} f^{-1}(A_i)$. Since f is weak smooth α -continuous with respect to τ and σ , f is weak* smooth α -continuous with respect to τ and σ by Theorem 3.5. Hence $f^{-1}(A_i) \in W_{w\alpha}(\tau)$ for each $i \in J$. Since (X, τ) is weak* quasi-smooth nearly

 α -compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_i))) = 1_X$. From the surjectivity of f we have

$$1_Y = f(1_X) = f(\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_i))))$$
$$= \bigcup_{i \in J_0} f(wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_i)))).$$

Since $f: X \to Y$ is weak smooth α -open with respect to τ and σ , from Theorem 3.12[7] we have

$$f(wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_i)))) \subseteq wint_{\alpha}(f(wcl_{\alpha}(f^{-1}(A_i))))$$

for each $i \in J$. Since $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ , from Theorem 3.10[7] we have $wcl_{\alpha}(f^{-1}(A_i)) \subseteq f^{-1}(wcl_{\alpha}(A_i))$ for each $i \in J$. Hence we have

$$1_Y = \bigcup_{i \in J_0} f(wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_i))))$$

$$\subseteq \bigcup_{i \in J_0} wint_{\alpha}(f(wcl_{\alpha}(f^{-1}(A_i))))$$

$$\subseteq \bigcup_{i \in J_0} wint_{\alpha}(f(f^{-1}(wcl_{\alpha}(A_i))))$$

$$= \bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)).$$

Thus $\bigcup_{i\in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_Y$. Hence (Y, σ) is weak* quasi-smooth nearly α -compact.

References

- 1. R. Badard, *Smooth axiomatics*, First IFSA Congress, Palma de Mallorca (July 1986)
- 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 3. M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems 90 (1997), 83-88.
- 4. _____, Three topological structures of smooth topological spaces, Fuzzy Sets and Systems 101 (1999), 185-190.
- 5. M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, *Almost compactness and near compactness in smooth topological spaces*, Fuzzy Sets and Systems **62** (1994), 193-202.
- 6. C. K. Park, W. K. Min and M. H. Kim, α-compactness in smooth topological spaces, Int. J. Math. and Math. Sci. **2003** (2003), 2897-2906.

- 7. C. K. Park and W. K. Min, Quasi-smooth α -structure of smooth topological spaces, Kangweon-Kyungki Math. J. **13(2)** (2005), 223-234.
- 8. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- 9. L. A. Zadeh, Fuzzy sets, Inform. and Control $\bf 8$ (1965), 338-353.

Won Keun Min
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail: wkmin@cc.kangwon.ac.kr

Chun-Kee Park
Department of Mathematics
Kangwon National University
Chuncheon 200–701, Korea
E-mail: ckpark@kangwon.ac.kr