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SCHENSTED INSERTION AND DELETION
ALGORITHMS FOR SHIFTED RIM HOOK TABLEAUX

JAEJIN LEE

ABSTRACT. Using the Bumping algorithm for the shifted rim hook
tableaux described in [5], we construct Schensted insertion and dele-
tion algorithms for shifted rim hook tableaux. This may give us the
combinatorial proof for the orthogonality of the second kind of the
spin characters of S, .

1. Introduction

In [8] Schensted constructed the Schensted algorithm giving a bijec-
tion between permutations and pairs of Young standard tableaux (see
also [2]). After Knuth generalized it to column strict tableaux in [3],
various analogs of the Schensted algorithm came. See [1], [4], [6], [7],
[9], [10] and [11].

In [10] White gives Schensted algorithm for rim hook tableaux. The
basic idea of the proof is as follows. A rim hook o, called the “attacking
hook”, percolates in a generally outward (SE) direction in a rim hook
tableau P, bumping rim hooks out of its way. When the attacking
hook reaches the outer boundary of P, a new P has been created and
the location of the attacking hook marks where to begin the reverse
process and thus the location of the last rim hook in a corresponding
Q.

In this paper we will give similar Schensted algorithm for shifted
rim hook tableaux using the Bumping algorithm for shifted rim hook
tableaux described in [5].

In section 2, we construct Schensted insertion algorithm for shifted
rim hook tableaux. Schensted deletion algorithm for shifted rim hook
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tableaux is given in section 3. See [5] for definitions and notations not
described in this paper.

2. Schensted insertion algorithm

Using the Bumping algorithms in [5] we now describe insertion and
deletion algorithms which are shifted rim hook analogs of the ordinary
Schensted insertion and deletion algorithms for identifying permuta-
tions with pairs of standard tableaux.

Algorithm Insert has as input a shifted (first tail circled) rim hook
tableau with all content parts odd (or 0) and a hook tableau of odd
size. The hook tableau must first be positioned so that we can apply
Algorithm BumpOut in [5]. Suppose A is a shifted shape and 7 is a
hook of odd size.

Algorithm Position (Input: X\, 7; Output: 7, mark)
begin
if A\ = () then
7 «— MakeRimHook(7; 7)
mark+«— false
else (x \ # () %)
je1
repeat
7 « RepeatedSlide; y(tail of 7,NE)
until AN7 =10
g1
repeat
7 < RepeatedSlide; »(head of 7,SW)
until 7 is legal on A
if 7 contains a non-reflected cell then
if the number of non-reflected cells of 7 is bigger
than the number of reflected cells of 7 then
7 «— 7 with no circle on the first tail of 7
mark<«—false
else
7 « 7 with a circle on the 1st tail of 7
mark+«false
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else (x every cell of 7 is reflected *)
mark<—true
end.

If 7 has an illegal tail on A, then RepeatedSlide; x(head of 7,SW)
has a legal head on A. Thus, both loops in the above algorithm must
terminate and the resulting 7 is an outside rim hook of A. See Figure
2.1,

(a)

T = F A=10 7 =[O unmarked
(b) : S
T = A=
7:unmarked
Figure 2.1

Let T be a shifted (first tail circled) rim hook tableau. We denote
by T} the shifted (first tail circled) rim hook tableau obtained from T
by removing all the rim hooks whose entry is larger than j. Similarly,
we denote by T7 the shifted skew (first tail circled) rim hook tableau
obtained from T' by removing all the rim hooks whose entry is smaller
than j. See Figure 2.2.

Let A and « be shapes of T;_; and 77, respectively. Now suppose T’
has shape p and content (p1,...,0j-1,0, Pj+1,-.-,Pm), With p; odd or
0. Let o be a hook of odd size. We make the following two assumptions
about |o| so that & bumps only rim hooks of equal length:
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Figure 2.2

AsSUMPTION 1. |o| < p; for all i # j.
ASSUMPTION 2. p; = |o| or 0 for all i > j.

The output from Algorithm Insert will be another shifted (first tail
circled) rim hook tableau T of content P = (P1s:+9Pm)s P5 = |o| and
shape fi such that 6 = i — p is an outside rim hook of yx, and a mark
of &. Furthermore, w'(T") = w'(T)w'(6).

Algorithm Insert (Input: T, o, j; Output: T,5, mark)
begin
Position (A, o; 01, mark)
A+ T;, U Ul(j)
B « TI+1
mark<— mark of o,
while B contains finite entries do
BumpOut (A, B, mark; A, B, mark, direction)
0 ;5 < bumping hook of A and B
A A
B« B
mark+ mark of bumping hook of A and B
/i
0 TiB
mark«— mark of o ;5
end.
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At the end, A = T, and B contains infinite entries only. By the
result of [5], o 4 5 is the intersection of T and B, and o 45 is an outside
rim hook of p.

Because of Assumption 1 and 2, no direction reversal occurs and
we can use BumpOut exclusively. Hence w'(A)w'(B)w'(o) is invari-
ant. At the first step, w'(A) = w'(Tj_1)w'(c), w'(B) = w'(T7*!)
and w'(cap) = w'(01). At the end, w'(A) = w'(T), w'(B) = 1
and w'(o43) = w'(6). Since w'(A)w'(B)w'(o) is invariant, we have
w'(T) = w'(Tj_1)w'(TIT') = w'(T)w' (6).

Figure 2.3 gives an example of the Insert algorithm. 7" and o (with
7’s in the cells of o) are given in Figure 2.3 (a). Then Figure 2.3 (b)-(g)
describe A and B (with cells in 045 indicated in heavy outline) at each
pass through the main loop. We also give the mark of the bumping
hook o 4p and the appropriate case number from BumpOut. Note that
w'(T) = —1 and w'(T)w'(6) = —1.

= [T Iz2T12]s[s[s] [@[1[1]z2]2] | HEE
1{1]2]el6|8|8 1 [1]2 6le|8]s
@|4(6|7|8 3 (D4]lel7]s
4177 A= 3 B= 41717
i o :unmarked
(a) (b) case (3)
®l1[1]2]2 Sis|s
1{1]2]4a BABEE
A= ®2: B= it B4 G5 o :marked
i £ cese (1)
(d) O] 1]1]2]2]s]s]5]
1111244 2BEE
A= Q3 4 B= 61718 o . marked
314 717 case (2)
(e) O 1 [1][2]2]s]s]s]
11[2]4]6 JE
A O3 146 B= f16 o :marked
3{4|6 r17 case (3)
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[ 1]1]2]2]s]s]s
t1ti21alebilz 8|8
Dl3|4|6]|7
A= A B= 8 0 . marked
case (3)
(f)
@1 [1]2]2]s[s ][5 [e]8]
1l1({2]ale|7]7]s
@|3 |46 |7
o S| 418 B= 0 : marked
(g)
Figure 2.3

3. Schensted deletion algorithms

We now describe Algorithm Delete which reverses the Insert algo-
rithm. In this algorithm we use the Bumpln algorithm in the previous
section. Unlike the Insert algorithm, the bumping hook may encounter
longer rim hooks, even though we make the same assumptions about
the order of content of the tableau that we made earlier in this section.
In such a case, sign reversal and cancellation occur.

First, we need Algorithm Hook to reverse the Position algorithm
described earlier. Suppose A is a shifted shape and 7 (|7| odd) is
an outside rim hook of A with a mark. The output from the Hook
algorithm will be a hook 7 of the same size as 7.

Algorithm Hook (Input: A, T, mark; Qutput: 7)
begin
if A =0 then
7 <— MakeHook(7; 7)
else (x A # 0 x)
if 7 is marked then
z < head of 7
d +— SW
else if 7 is unmarked and single then
x < tail of 7
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d +— NE
else if 7 has a circle on its first tail then
z < 1st head of 7
d +— SW
else (x 7 has no circle on its first tail )
T < 2nd head of 7
d < SW
j«1
repeat
7 < RepeatedSlide; )(z, d)
until 7 is contained in the first row
j+1
repeat
7 + RepeatedSlide; y(head of 7, SW)
until 7 intersects the first column
end .

Figure 3.1 shows an example of the Hook algorithm.

l S [ ]

T unmarked

Figure 3.1

Certainly we have

LEMMA 3.1. Position and Hook are inverses of one another. That
is, the procedure:

begin
Position (A, 7; 7, mark)
Hook (A, 7, mark; 7)
end.
yields T = 7; and the procedure:
begin

Hook (A, 7, mark; 7)
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Position (A, 7; 7 mark)
end.
also yields T = # and mark of 7 = mark of 7 under the special circum-
stances that Hook will be used.

The Delete algorithm has as input a shifted (first tail circled) rim
hook tableau T' of shape p and content p = (p1,p2,---,pPm), p;i odd
for 1 < i < m, and an outer rim hook o (|o| odd) of u with a mark.
We make the following assumption so that the bumping hooks do not
encounter smaller rim hooks:

ASSUMPTION 3. |o| < p; for all i.

Algorithm Delete will produce one of the following two outcomes:

(1) A shifted (first tail circled) rim hook tableau T of shape ji and
content ﬁ, and an outer rim hook ¢ of i with a mark such that
( ) - 107
(b) i =(u—0)Ud and

(c) w'(T)w'(6) = —w!(T)w' (o).

(2) A shifted (first tail circled) rim hook tableau T of shape fi and

content ﬁ, a value j; and a hook & such that

( ) (p17'"apj—laoapj—i—la"'apm)a
(b) p; = o] = |a],
(c) o= (n— o) and
(d) w’(T)w’(a) =w'(T).
We differentiate between the cases with the variable outcome which
takes values cancellation in case (1) and deletion in case (2).

Algorithm Delete (Input: T,o, mark; Output: T,6,j, mark, outcome)
begin
AT
B «— o(00)
mark«— mark of o
direction«— inward
repeat
if direction is inward then
Bumpln (A, B, mark; A, B, j, timetostop, mark,
direction)
else (x direction is outward x*)
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BumpOut (A, B, mark; A, B, mark, direction)
o 45 < bumping hook of A and B
mark«— mark of 0 4 5
A— A
B« B
until B has no finite entries or timetostop
if timetostop then
T—AUB
mark«— mark of 0 4 5
A « shape of A
Hook (A — 045,045, mark ;0)
outcome«— deletion
else (x B has no finite entries )
T—A
G 04p
mark« mark of o ;5
outcome+«— cancellation
end.

Recall that direction reversals occur if and only if sign reversals take
place. Hence, no pair (A, B) can be encountered twice in the Delete
algorithm, i.e., it must terminate.

If the outcome is a cancellation, direction reversals have occurred
an odd number of times. Therefore, w'(T)w'(6) = —w'(T)w'(0).
If the outcome is a deletion, the final direction must be inward, so
w'(A)w'(B)w'(04p) has changed signs an even number of times. Thus,
w'(T) = w'(T)w'(0). Figure 3.2 shows an example where deletion oc-
curs, while Figure 3.3 shows an example where cancellation occurs.

In Figure 3.2 (a) and Figure 3.3 (a), T" and o (with cells of ¢ indi-
cated in heavy outline) are given respectively. Then Figure 3.2 (b)—(e)
and Figure 3.3 (b)—(f) describe A and B (with cells in o045 indicated
in heavy outline) at each pass through the main loop. Again we give
the mark of the bumping hook ¢ 45, and the appropriate case number

~

from BumpOut and BumplIn. Note that w'(T) = w'(T)w'(c) = —1 in

A

Figure 3.2 and w'(T)w'(0) = —1, w'(T)w’(¢) = +1 in Figure 3.3.
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©]1{2]3]3 |4 (O] [2]3]3]4] |
1{2(3]4 |4 1{2]3]4]|4 |_’
T= J2l5]5}6 _ |2]sl]S I 61616
5|66 ke 5 iy
o: unmarked
case (2) o:unmarked
() (b) case (2)
@1 ]2]3]3]4 s
11213144 S| o:unmarked
A: LZ_.. B= I |6 cle case (3)
(¢)
Ol 1[2]3]3] 5 )
Ao Lt[2]3 B s{s a=
T 2] B leleis
(d)

2 5
216 |16|6
(e)
Figure 3.2

From Lemma 3.1 we have

THEOREM 3.2. Insert and Delete are inverses of one other. That
is, the procedure:
begin
Insert (T, 0,7;T,&, mark)

Delete (1", 6, mark; T', &, j, mark, outcome)
end.
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Li|1[1][1]2]afa]a]a]s
1121212 1la[sslsls
21313 o :unmarked
A= 3 B |
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(1)

Figure 3.3
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~
A

yields T = T,o0 = & and the outcome will be a deletion; and the
procedure:
begin

Delete (T, o, mark; 1,6, 4, mark, outcome)
if outcome is cancellation then

Delete (T, &, mark; T, 3,]', mark, outcome)
else (x outcome is deletion )

Insert (T,&,j;f’,é, mark)

end.

will yield T' = %, o = & and mark of o=mark of &.

10.

11
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