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SCHENSTED INSERTION AND DELETION
ALGORITHMS FOR SHIFTED RIM HOOK TABLEAUX

Jaejin Lee

Abstract. Using the Bumping algorithm for the shifted rim hook

tableaux described in [5], we construct Schensted insertion and dele-

tion algorithms for shifted rim hook tableaux. This may give us the
combinatorial proof for the orthogonality of the second kind of the

spin characters of Sn.

1. Introduction

In [8] Schensted constructed the Schensted algorithm giving a bijec-
tion between permutations and pairs of Young standard tableaux (see
also [2]). After Knuth generalized it to column strict tableaux in [3],
various analogs of the Schensted algorithm came. See [1], [4], [6], [7],
[9], [10] and [11].

In [10] White gives Schensted algorithm for rim hook tableaux. The
basic idea of the proof is as follows. A rim hook σ, called the “attacking
hook”, percolates in a generally outward (SE) direction in a rim hook
tableau P , bumping rim hooks out of its way. When the attacking
hook reaches the outer boundary of P , a new P has been created and
the location of the attacking hook marks where to begin the reverse
process and thus the location of the last rim hook in a corresponding
Q.

In this paper we will give similar Schensted algorithm for shifted
rim hook tableaux using the Bumping algorithm for shifted rim hook
tableaux described in [5].

In section 2, we construct Schensted insertion algorithm for shifted
rim hook tableaux. Schensted deletion algorithm for shifted rim hook
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tableaux is given in section 3. See [5] for definitions and notations not
described in this paper.

2. Schensted insertion algorithm

Using the Bumping algorithms in [5] we now describe insertion and
deletion algorithms which are shifted rim hook analogs of the ordinary
Schensted insertion and deletion algorithms for identifying permuta-
tions with pairs of standard tableaux.

Algorithm Insert has as input a shifted (first tail circled) rim hook
tableau with all content parts odd (or 0) and a hook tableau of odd
size. The hook tableau must first be positioned so that we can apply
Algorithm BumpOut in [5]. Suppose λ is a shifted shape and τ is a
hook of odd size.

Algorithm Position (Input: λ, τ ; Output: τ̂ , mark)
begin

if λ = ∅ then
τ̂ ← MakeRimHook(τ ; τ̂)
mark← false

else (∗ λ 6= ∅ ∗)
j ← 1
repeat

τ̂ ← RepeatedSlidej,∅(tail of τ,NE)
until λ ∩ τ̂ = ∅
j ← 1
repeat

τ̂ ← RepeatedSlidej,λ(head of τ̂ , SW)
until τ̂ is legal on λ
if τ̂ contains a non-reflected cell then

if the number of non-reflected cells of τ̂ is bigger
than the number of reflected cells of τ̂ then

τ̂ ← τ̂ with no circle on the first tail of τ̂
mark←false

else
τ̂ ← τ̂ with a circle on the 1st tail of τ̂
mark←false
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Position (λ, τ̂ ; ˆ̂τ , mark)
end.
also yields τ = ˆ̂τ and mark of τ = mark of ˆ̂τ under the special circum-
stances that Hook will be used.

The Delete algorithm has as input a shifted (first tail circled) rim
hook tableau T of shape µ and content ρ = (ρ1, ρ2, . . . , ρm), ρi odd
for 1 ≤ i ≤ m, and an outer rim hook σ (|σ| odd) of µ with a mark.
We make the following assumption so that the bumping hooks do not
encounter smaller rim hooks:

Assumption 3. |σ| ≤ ρi for all i.

Algorithm Delete will produce one of the following two outcomes:
(1) A shifted (first tail circled) rim hook tableau T̂ of shape µ̂ and

content ρ̂; and an outer rim hook σ̂ of µ̂ with a mark such that
(a) ρ̂ = ρ,
(b) µ̂ = (µ− σ) ∪ σ̂ and
(c) w′(T̂ )w′(σ̂) = −w′(T )w′(σ).

(2) A shifted (first tail circled) rim hook tableau T̂ of shape µ̂ and
content ρ̂; a value j; and a hook σ̂ such that

(a) ρ̂ = (ρ1, . . . , ρj−1, 0, ρj+1, . . . , ρm),
(b) ρj = |σ̂| = |σ|,
(c) µ̂ = (µ− σ) and
(d) w′(T̂ )w′(σ) = w′(T ).

We differentiate between the cases with the variable outcome which
takes values cancellation in case (1) and deletion in case (2).

Algorithm Delete (Input: T, σ, mark; Output: T̂ , σ̂, j, mark, outcome)
begin

A← T
B ← σ(∞)
mark← mark of σ
direction← inward
repeat

if direction is inward then
BumpIn (A,B, mark; Â, B̂, j, timetostop, mark,

direction)
else (∗ direction is outward ∗)
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BumpOut (A,B, mark; Â, B̂, mark, direction)
σÂB̂ ← bumping hook of Â and B̂
mark← mark of σÂB̂

A← Â
B ← B̂

until B has no finite entries or timetostop
if timetostop then

T̂ ← Â ∪ B̂
mark← mark of σÂB̂

λ← shape of Â
Hook (λ− σÂB̂ , σÂB̂ , mark ; σ̂)
outcome← deletion

else (∗ B has no finite entries ∗)
T̂ ← Â
σ̂ ← σÂB̂

mark← mark of σÂB̂

outcome← cancellation
end.

Recall that direction reversals occur if and only if sign reversals take
place. Hence, no pair (A,B) can be encountered twice in the Delete
algorithm, i.e., it must terminate.

If the outcome is a cancellation, direction reversals have occurred
an odd number of times. Therefore, w′(T̂ )w′(σ̂) = −w′(T )w′(σ).
If the outcome is a deletion, the final direction must be inward, so
w′(A)w′(B)w′(σAB) has changed signs an even number of times. Thus,
w′(T̂ ) = w′(T )w′(σ). Figure 3.2 shows an example where deletion oc-
curs, while Figure 3.3 shows an example where cancellation occurs.

In Figure 3.2 (a) and Figure 3.3 (a), T and σ (with cells of σ indi-
cated in heavy outline) are given respectively. Then Figure 3.2 (b)–(e)
and Figure 3.3 (b)–(f) describe A and B (with cells in σAB indicated
in heavy outline) at each pass through the main loop. Again we give
the mark of the bumping hook σAB , and the appropriate case number
from BumpOut and BumpIn. Note that w′(T̂ ) = w′(T )w′(σ) = −1 in
Figure 3.2 and w′(T )w′(σ) = −1, w′(T̂ )w′(σ̂) = +1 in Figure 3.3.
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yields T = ˆ̂
T , σ = ˆ̂σ and the outcome will be a deletion; and the

procedure:
begin

Delete (T, σ, mark; T̂ , σ̂, j, mark, outcome)
if outcome is cancellation then

Delete (T̂ , σ̂, mark; ˆ̂
T , ˆ̂σ, j, mark, outcome)

else (∗ outcome is deletion ∗)
Insert (T̂ , σ̂, j; ˆ̂

T , ˆ̂σ, mark)
end.
will yield T = ˆ̂

T , σ = ˆ̂σ and mark of σ=mark of ˆ̂σ.
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