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ZERMELO’S NAVIGATION PROBLEM ON HERMITIAN
MANIFOLDS

NANY LEE

ABSTRACT. In this paper, we apply Zermelo’s problem of naviga-
tion on Riemannian manifolds to Hermitian manifolds. Using a sim-
ilar technique with which we define a Randers metric in a Finsler
manifold by perturbing Riemannian metric with a vector field, we
construct an (a, b, f)-metric in a Rizza manifold from a Hermitian
metric and a given vector field.

1. Introduction

In [BRS04], Bao, Robles and Shen dealt with Zermelo’s problem of
navigation on Riemannian manifolds and Randers metric as its solu-
tion. Here we will consider Zermelo’s navigation problem on Hermitian
manifolds.

Let M be a smooth 2n-dimensional manifold with almost complex
structure f and a Riemannian metric A which is compatible with f. Let
W be a vector field on M. As in Zermelo’s problem of navigation on
Riemannian manifolds, W can be considered as a force of a wind or
a current. But this time, we will think that W accompanies another
influential force fW. So we have a combined force W + fWV.

In [BRSO4], if h(W + fW, W + fW) < 1, i.e., h(W, W) < 1/2, then
we have a Randers metric L from the data of the Riemannian metric A
and the vector field W + fW. We show that the necessary and sufficient
condition for this Randers metric L to be a Rizza metric is that W must
be a zero vector field. So we need to modify Randers metric L by adding
one correction term in order to be a Rizza metric. The resulting metric
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happens to be an (a, b, f)-metric, which is an example of a generalized
Randers metric.

In [Lee03], we computed the fundamental tensor g;; of (a, b, f)-metric
and its inverse g*. Here we prove that (a, b, f)-metric is a Rizza metric
by showing that g;;fif*y’ = 0. As for Randers metric in the Finsler
manifolds, (a, b, f)-metrics are very interesting class in Rizza manifolds.
For further description of (a, b, f)-metrics, we refer to [I-H95, I-H96| and
[Lee03].

2. Preliminaries

Let (M, f, L) be a 2n-dimensional manifold with an almost complex
structure f and a Finsler metric L. In [Riz62, Riz63, Riz64], G. B. Rizza
introduced the so-called Rizza condition

L(z,¢9(y)) = L(z,y) forallz € M, y e T,M and € R,

where qbgj (cos 0)d% 4 (sin6) f;.

In [Heil65], E. Heil showed that if the fundamental tensor g;; of the
Finsler metric L satisfies g,(z,y) f{ (7)f] (x) = gij, then the Finsler met-
ric L is a priori a Riemannian metric. Thus it is necessary to consider
a weak condition on the Finsler metric like the Rizza condition. Note
that the Rizza condition is equivalent to g,,(x,y) f7(x)y*y? = 0.

Recall that a generalized Randers metric is a Finsler metric in the
form L = a + (8, where « is a Riemannian metric and 3 is a singular
Riemannian metric. If § is a 1-form, then L is a Randers metric.

Now we will consider generalized Randers metrics on almost Hermit-
ian manifolds. Let M be a 2n-dimensional Riemannian manifold with an
almost complex structure f and a Riemannian metric a which is com-
patible with f. Given a non-vanishing covariant vector field b;(x) on M |
we get a singular Riemannian metric

Bla,y) = (by(x)y'y?)'?,

where b;; = bib; + fif;, fi = b.fl. Such L = a + [ is an interesting
example of a generalized Randers metric. We call this metric an (a, b, f)-
metric and (M, L) an (a,b, f)-manifold.

LEMMA 2.1. A (a,b, f)-metric L = o + (3 satisfies a Rizza condition.
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Proof. The fundamental tensor g;; of L can be written by

L L L L L
9ij = i + Bbibj + sz’fj + L;L;j — % — Bﬂiﬁj ;
where o; = g—;, Bi = 9= a; + 0; . It is sufficient to show that

Byt
9pe(z,y) fL(x)y*y? = 0. By direct calculation, we get

apg (2, Y) fi (2)y*yT

apg(,y) (@)Y Yy =0, opey) )y = 0,
a(y)
bpbqf,f(x)ykyq = _fpqulf(x)ykyqa
bpa (2, y) i (2)y*y? L
Lquflf(x)yk?/q =L l:9) /i (@) = —ﬁpﬁqf,f(:ﬂ)ykyq
By) 3
using the fact that fo f = —Id and a = /a;;(x)y'y’ is Hermitian. This
leads to gpy(z,y) fr(z)y*y? = 0. O

3. Construction of (a,b, f)-metrics

Recall the following in [BRS04]:

PRrROPOSITION 3.1. A strongly convex Finsler metric is of Randers
metric L = a+ 3 if and only if L solves the Zermelo navigation prob-
lem on a Riemannian manifold (M, h), with the influence W satisfying
h(W, W) < 1.

L = a + [ is related with the Riemannian metric h and the vector
field W by the following formulas

a(z,y) = y/ai(2)y'y’, B(z,y) = bi(z)y',

where " — -
ij i ¥V %
A U U S
and W; = hy;W? and A =1 — W'W,.

Now let M be a 2n-dimensional Riemannian manifold with an al-
most complex structure f and consider a Riemannian metric h satisfying
MX,Y) = h(fX, fY). Let W be a vector field with h(W,W) < 1. By
perturbing a Riemannian metric h under the influence of W, we obtain

Randers metric L = o + .
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Suppose L = a + 3 is a Rizza metric, i.e., gy, fry*y? = 0. The funda-
mental tensor g;; of L = o+ 3 is

L
gij = Eaij — glll] + llbj + ljbl + bibj,

k
a.
with [; = ay: = ikY .

o}
By direct calculation, we get

L
gqulfykyq = o {aqulfykyq + a(Q)ﬁ(f?J)} =0,

ape f1Y"y* + ay)B(fy) = 0.
Plugging -y in y , we also get

apg fLy"y" — a(y)B(fy) = 0.
Thus B(fy) = 0 which means W = 0.

PROPOSITION 3.2. Let (M, h) be a 2n-dimensional Riemannian mani-
fold with an almost complex structure f satisfying h(X,Y) = h(fX, fY).
Let L = a+ 3 be a solution to the Zermelo navigation problem on the
Riemannian manifold (M, h) under the influence W. Then L is also a
Rizza metric if and only if W = 0.

Let W be any vector field with h(W 4+ fW, W+ fW) = 2h(W, W) < 1.
From the data of the Riemannian metric h and the vector field W + fW,
we get the Randers metric L, = «, + (3,. By the above argument, L, is
not a Rizza metric. So we need the correction term

Aly) = %h(W, y)h(fW,y).

Now we will construct a Rizza metric.

THEOREM 3.3. Let (M, h) be a 2n-dimensional Riemannian manifold
with an almost complex structure f satisfying h(X,Y) = h(fX, fY') and
W be a vector field with h(W, W) # 1. Let « and 3 be such that

o =a2—-A and 3 =3 —A.

Then L = a+ ( is an (a,b, f)-metric and L is regular on D, where D is
a complement of {y|h(W,y) = h(fW,y) = 0}.
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B W W, P Wy f1 . .
Proof. We can have a; = =% + WA/TJ + pr ++ which satisfies

apq(x)f,fff = a;j(x). If we let b; = %, then B(z,y) = (bib; + fifj)1/2
with f; = b,f. Thus this L = a + § is a (a,b, f)-metric. By the The-
orem 4.1 in [Lee03], L is strongly convex on D. Thus L = a + f is a
y-local Finsler structure on D and satisfies Rizza condition. [
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