
Kangweon-Kyungki Math. Jour. 14 (2006), No. 1, pp. 35–46

VISUALIZATION OF DISCRETE CONVOLUTION
STRUCTURE USING TECHNOLOGY

Keehong Song

Abstract. The concept of convolution is a fundamental mathe-
matical concept in a wide variety of disciplines and applications
including probability, image processing, physics, and many more.
The visualization of convolution for the continuous case is generally
predetermined. On the other hand, the convolution structure em-
bedded in the discrete case is often subtle and its visualization is
non- trivial. This paper purports to develop the CAS techniques in
visualizing the logical structure in the concept of a discrete convo-
lution.

1. Introduction

The probability distribution of the sum of independent random vari-
ables and the weighted moving average can be obtained using the idea
of convolution. Smoothing of the periodic data with noise as typi-
cally seen in electrical engineering and time series analysis is also a
derivative of convolution. Indeed, the concept of convolution is the
mathematical basis for a wide variety of applications across the disci-
plines. The convolution of two functions, denoted by f ∗ g, is given by
the integration

(f ∗ g)(x) =
∫ ∞

−∞
f(u)g(x− u)du.

Thus, intuitively, a convolution measures the amount of overlap of
one function as it is moving over another function. Basically, it is kind
of superimposition as indicated in the German name of convolution,
faltung or folding. Then the idea behind convolution is mostly visual

Received December 22, 2005.
2000 Mathematics Subject Classification: 94C15, 97U70.
Key words and phrases: Fourier transform, discrete convolution, Mathematica

implementation, Macromedia Flash.

36 Keehong Song

and thus the visualizing ideas of the concept for the continuous case is
pretty much predetermined as demonstrated in the website materials
for this paper. However, visualizing the ones for the discrete case
requires imagination as well as the technological expertise. This paper
develops and investigates the methodology of visualization techniques
for the discrete convolution structures.

2. Convolution structure in polynomial

Given two polynomials, a0 + a1x+ a2x
2 + a3x

3 + · · · and b0 + b1x+
b2x

2+b3x
3+ · · · , it is easy to see that the coefficient list of the product

of two polynomials has the convolution structure. Conversely, once the
discrete convolution is defined as a computer routine, the coefficient list
of the product of two polynomials can be obtained without multiplica-
tion. The list of coefficients can be obtained directly from two lists in a
similar manner to the situation that one slip of tape is sliding against
the other, in which the slip is the metaphor for a numeric sequence.
Now the idea of the discrete convolution can be implemented as listed
below.

convolution[f ,impulse]:=Module[{leftsize=Length[f],
rightsize=Length[impulse],i,j},
Table[Sum[f[[j]]*impulse[[i-j+1]],
{j,Max[1,i-rightsize+1],Min[i,leftsize]}],
{i,1,leftsize+rightsize-1}]]

Using the Mathematica function, we can find the coefficients of the
product of two polynomials without multiplication [8].

convolution[Array[a,5],Array[b,5]]//TableForm

Similarly, the coefficient list can be visually organized in terms of
columns this time and then the outcome is also known as the Pascal
triangle.

ColumnForm[NestList[convolution[{1,1},#]&,{1,1},9],
Center]

{1, 1}
{1, 2, 1}

{1, 3, 3, 1}

Visualization of discrete convolution structure using technology 37

{1, 4, 6, 4, 1}
{1, 5, 10, 10, 5, 1}

{1, 6, 15, 20, 15, 6, 1}
{1, 7, 21, 35, 35, 21, 7, 1}

{1, 8, 28, 56, 70, 56, 28, 8, 1}
{1, 9, 36, 84, 126, 126, 84, 36, 9, 1}

{1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1}

3. Convolution in probability

A typical problem in elementary probability theory involving the
sum of the eyes of the dice can be solved using the idea of convolution.

dice = 1/6{1,1,1,1,1,1}
convolution[dice, dice]
{1/36,1/18,1/12,1/9,5/36,1/6,5/36,1/9,1/12,1/18,1/36}
Now we consider the following problem as an extension of the dis-

cussion above to appreciate the utility of the idea.

Example 1. Ten one dollar bills, 7 five dollar bills, 2 ten dollar bills,
1 twenty dollar bill are mixed in a bag, find the probability distribution
function of the two bills drawn in sequence with replacement and its
amount is added together.

This problem can also be handled in a similar manner as the dice
problem, which is the idea of discrete convolution shown in the follow-
ing:

coins=1/20{10,0,0,0,7,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1};
convolution[coins,coins]
{1/4,0,0,0,7/20,0,0,0,49/400,1/10,0,0,0,7/100,0,0,0,0,
1/100,1/20,0,0,0,7/200,0,0,0,0,1/100,0,0,0,0,0,0,0,0,
0,1/400}

4. Fourier Transform

Now let’s see how discrete case can be solved in a continuous domain,
where the primary conceptual tool is going to be the Fourier transform.
A Fourier series can sometimes be used to represent a function over an

38 Keehong Song

interval. A generalization of the complex Fourier series, the Fourier
transform of the convolution of f(x) and g(x) is equal to the product
of the Fourier transforms of f(x) and g(x), F{f ∗ g} = F{f} ∗ F{g}
[1]. For the case of Mathematica, Fourier transform is defined as

√
|b|

(2π)1−a

∫ ∞

−∞
f(t)eibωtdt.

The rationale behind the definition is to mainly incorporate the
variations by adjusting the parameters as each discipline defines the
mathematical idea differently.

As an example, the characteristic function of a probability density
function defined as

∫∞
−∞ eibωxf(x)dx is the Fourier transform with both

of parameters a and b being set to 1. Here is an example that demon-
strates the case where the Fourier transform finds the probability dis-
tribution of the sum of the two and three random variables respectively
and it’s done with simplicity and flexibility(Figure 1, Figure 2).

ft=FourierTransform[UnitStep[x]-UnitStep[x-1],x,w,
FourierParameters->{1,-1}]//Expand//Simplify
InverseFourierTransform[Expand[ft2],w,x,
FourierParameters->{1,-1}]
Plot[%,{x,0,2}]

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 1.

Visualization of discrete convolution structure using technology 39

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.

Now for the case of the sum of three random variables, we are begin-
ning get the bell-shaped distribution as in Figure 2, which will eventu-
ally become normal distribution due to the central limit theorem. At
this point, a heuristic argument can be made: The convolution of a
sharp-edged functions, square and a triangle, produces a smooth, bell-
shaped graph, which suggests a general significance of convolution as
the smoothing operator.

Revisiting Example 1 discussed earlier, this time with the Fourier
transform in mind, we can set the problem up using Dirac delta and
then solve using Fourier transform and the convolution theorem in the
similar manner as demonstrated below:

f=1/20(10 DiracDelta[x-1]+7 DiracDelta[x-5]
+2 DiracDelta[x-10]+1 DiracDelta[x-20])
FT=FourierTransform[f,x,s,FourierParameters->{1,-1}]
result=InverseFourierTransform[Expand[FT2],s,x,
FourierParameters->{1,-1}]
result /.DiracDelta[]->1

5. Convolution in discrete mathematics

Now we can verify that the same probability distribution is obtained
when discrete Mathematica convolution function is used. As for the

40 Keehong Song

examples of the structure of discrete convolution, consider the following
set of circumstances.

Case1. The number of legal expressions using the n opening and n
closing parentheses.

Case2. The number of paths from (0,0) to (2n,0), without touching
x-axis during the entire walking process.

Case 3. The number of possible combinations of order of the cars
coming in and out of the dead-ended, narrow-alley parking lot.

Case 4. The number of binary trees with n nodes.
Case 5. The number of triangulations given a convex n-polygon.

2 4 6 8 10

-1

1

2

3

Figure 3.

It is a basic fact in discrete mathematics that the common basis for
these problems described above is the idea of convolution([2], [3], [4]).
In order to see the one-to-one correspondence among the cases listed
above, the basic idea to start would be the reflection principle which
gives a combinatoric argument for counting the discrete convolution
structure. As an example, consider a sequence, -1, 1, -1, 1, 1, -1,
1, -1, -1, 1, which consists of five -1’s and five 1’s. As each element 1
represents the ascending step forward in the east-north direction and -1
toward the east-south, the sequence shows the solid line in the diagram
shown the Figure 3. Starting from the point of single step forward
right after the point where the sequence becomes illegal, the apparent

Visualization of discrete convolution structure using technology 41

illegal sequence can be converted into a regular sequence made of n+1
elements of 1’s and n− 1 elements of -1’s and vice versa.

Now let’s first discuss the method of generating binary trees using
the fact that the number of binary trees is equal to the Catalan number.
The root of the tree can be considered to be a binary tree of size 1, and
each of the subtrees on both left and right-hand side is also a binary
tree. Thus, we establish the equality among the generating functions
B(z) = left×root×right = B(z)×z×B(z) = zB2(z)−B(z)+1 which
yields the generating function for the convolution zB2(z)−B(z)+1 = 0.

Figure 4.

The generation of the entire set of the binary trees as in Figure 4
would also be accomplished utilizing the idea in the construction of the
relevant recurrence relation bn+1 = b0bn + b1bn−1 + · · ·+ bn−1b1 + bnb0.

Figure 5.

Now, with the letter a in boldface representing the root of the binary
tree, the binary tree can be rearranged as the Figure 5 with respect to
the position of the root, clearly establishing the relationship between
Case 3 and Case 4.

42 Keehong Song

The idea suggests the constructive algorithm for generating the bi-
nary trees, iterating through the each element in the set as the root
moves from the first position to the last.

catalanTree[{}]:={{}}
catalanTree[{a }]:={{a}}
catalanTree[l List]:=Module[{m=Rest[l],i,

fstElem=First[l]},
(Insert[#,{fstElem},2]&)/@(Flatten[#,1]&)@
Table[Distribute[{catalanTree[Take[m,i]],
catalanTree[Take[m,{i+1,Length[m]}]]},List],
{i,0,Length[m]}]]

catalanTree[{1,2,3}]
{{{},{1},{{},{2},{3}}},{{},{1},{{3},{2},{}}},{{2},{1},
{3}},{{{},{2},{3}},{1},{}},{{{3},{2},{}},{1},{}}}
Here, by flattening the trees above, we get the order in which the

cars can go in and out of the narrow-alley parking lot.

Flatten /@ %
{1, 2, 3}
{1, 3, 2}
{2, 1, 3}
{2, 3, 1}
{3, 2, 1}
Based on the set of binary trees obtained in the manner described

above, we can find the edges involved in a triangulation of a convex
polygon by way of doing the depth-first traversal. Using the data
structure used in the construction of triangulation, we can also get the
binary counterpart by connecting the edges as it does the depth-first
search of the catalan tree defined above.

Sketch of Triangulation Algorithm.

1. Create the matching set of binary tree for a given convex n-
polygon.

2. Do depth-first traversal for each binary tree to find the edges
which correspond to the triangulations of a convex n-polygon.

Visualization of discrete convolution structure using technology 43

Figure 6.

As a side note, in the Mathematica implementation, the proper use
of the module construct, Block instead of Module, is critical as it deals
with the dynamic scoping of variables(Figure 6, Figure 7).

NodeQ=Function[c,c=!={}];
search[{lc ?NodeQ,{parent },rc ?NodeQ},{l ,r }]:=

(*store the edge info in the array*)
(*do the left-hand side branches*)
(*do the right-hand side branches*)

search[{lc ?NodeQ,{parent },{}},{l ,r }]:=
(*do the terminating branch*)

search[{{},{parent },rc ?NodeQ},{l ,r}]:=
(*do the terminating branch*)

triangleEdges[n]:=Block[{storage=branches={},v,m,tree},
· · · · · · · · ·
(* process edge info *)

44 Keehong Song

Table[search[tree[[m]],{2,1}];
(* do depth-first search *)
(* store branches in an array *)
{m,1,Binomial[2n,n]/(n+1)}];
· · · · · · · · ·];

Figure 7.

6. Related Web technology and the future research

Often the visualization of mathematical concepts often requires re-
fined control over the graphical outputs for various reasons. For that
need, the computer algebra system is limited as the visual problem
solving tool and the specialized multimedia solution is called for.

As seen in the example of convex n-polygon triangulation, the graph-
ical output becomes easily too excessive for each triangulation to be
identified and controlled. Figure 8 shows a Flash movie example where
the individual item can be stored in a scrollable object for further ma-

Visualization of discrete convolution structure using technology 45

nipulation. In that situation, the computer algebra system hidden in
the background needs to communication with the web objects in a
browser in a timely manner.

The author of this paper developed an ActiveX control that allows
users to harness the computational engine of Mathematica from within
the web objects such as the Flash movies and the browser components.
The idea of multimedia user-interface for CAS can be easily modified
to apply in more complex system configuration such as .NET and Java
platform([4], [5], [6], [7]).

Figure 8.

Programming Files

1. The mathematica file containing the programs for this paper is
downloadable from:

http://home.pusan.ac.kr/∼math/research/convolution paper.zip

2. Visualization and animation for this paper can be viewed at the
following url:

http://mathematica.co.kr/mathcomm/31 concepts/convolution

References

1. R. Bracewell, The Fourier transform and its applications, 3rd ed., McGraw-
Hill, 1999.

2. S. Even, Graph Algorithm, Computer Science Press, 1979.

3. L. Lovász, Combinatorical Problems and Exercises, 2nd ed., North-Holland,
1993.

4. S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica, Addison-Wesley, 1990.

46 Keehong Song

5. K. H. Song, Flash-Enabled User Interface for CAS, Internet Accessible Mathe-
matical Computation, a Workshop at ISSAC 2003, Drexel University, Philadel-
phia, PA, USA.

6. K. H. Song, Developing Computational Web Animation - using Flash and .NET
Technology, Internet Accessible Mathematical Computation, a Workshop at
ISSAC 2004, University of Cantabria, Santander, Spain.

7. K. H. Song, Multimedia User-Interface for CAS, ASCM 2005, KIAS, Korea.
8. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer,

Addison-Wesley, 2004.

Department of Mathematics Education
Pusan National University
Pusan, 609–735, Korea
E-mail : khsong@pusan.ac.kr

