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Robustness Analysis Under Second-Order Plant and Delay
Uncertainties for Symmetrically Coupled Systems with Time Delay
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This paper aims at presenting robustness analysis under the uncertainties of the time delay and

plant parameters in symmetrically coupled dynamic systems connected through network having
time delay. The delay-involved closed loop characteristic function is mathematically formulated,
incorporated with active synchronization control. And the robust stability of the corresponding
system is analyzed by investigating the formation of characteristic equation containing second-

order terms of uncertainty variables representing delay and plant dynamics mismatches. For the

two individual types of uncertainties, we elucidate details of how to compute the bounds and
what they imply physically. To support the validity of the mathematical claims, numerical

examples and simulations are presented.
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1. Introduction

Coupled systems accommodate multiple sub-
systems connected through some ways of com-
munication. Position matching between subsys-
tems within a coupled system implies a task of
synchronizing position state among the subsys-
tems in different locations. If the distance between
the subsystems is large, information exchange
may take non-negligible time, which necessitates
time-delay consideration in the characterization
of closed loop behavior. Broad range of synchro-
nization controls for coupled systems can be
found in various literatures in engineering fields,
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no matter if time delay is considered or not.

A variety of master-slave systems in the teleo-
perator control are representative examples that
hold ideal requirements of perfect position syn-
chronization as well as transparency (Aderson
and Spong, 1989 ; Niemeyer and Slotine, 1991 ;
Lawrence, 1993) under communication delay,
though both cannot be achieved simultaneously.
Control of identical dual-cylinder electro-hydrau-
lic lift system (Sun and Chiu, 2002) is another
example of synchronization addressed by Sun
and Chiu. Generalized synchronization control to
multi-axis identical motion control systems was
also studied in (Liu and Sun, 2005), where the
stabilization issue was mainly addressed. A syn-
chronization approach to minimize the mutual
error between mobile vehicle and loaded mani-
pulator was reported in (Sun and Feng, 2003 ;
Rodriguez-Angeles and Nijmeijer, 2004). An In-
ternet based model predictive control approach
(Changhong ¢t al., 2004) was used to synchronize
remote plant and local computer model, where
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the randomness of time delay was explicitly dealt

with. In shared virtual environment applications, .

a position synchronization scheme was intro-
duced (Cheong et al, 2005) to allow multiple
users to interact through shared virtual objects in
the distributed virtual environment.

Not only the stability analysis, but also the ro-
bustness analysis is very much important in the
synchronization control with time delay. Since
time delay plays a severely adverse role in the
stability point of view, special care must be paid
to delay uncertainty. In the work done by Yamanaka
and Shimemura (1987), a necessary and sufficient
robust stability condition was addressed under
the plant and time delay uncertainties using the
frequency sweeping technique. This was derived
from comparing the growth rate of plant uncer-
tainty in the high frequency and designed con-
troller using Smith predictor (Smith, 1957 ; Sa-
tacesaria and Scattolini, 1993). Uncertainty in
the delay was specially considered in (Zhang and
Xu, 2001), where it is suggested that a suitable
choice of controller order can improve perform-
ance and the uncertainty bound as well. In the
case of teleoperator control systems, the uncer-
tainty in the plant was considered during the
synthesis of robust controller using like H. or
#-synthesis (Kazerooni et al., 1993 ; Lung et al.,
1995) frameworks. However, such design methods
have not clearly shown ways to handle time delay
uncertainty, which possibly limits the applicabi-
lity in practice. Taoutaou et al. (2003) performed
a robustness analysis for a eleoperator system
under time delay and plant uncertainties by ex-
plicitly deriving the characteristic function in
terms of dynamic parameters.

In this paper we particularly focus on the ro-
bustness issue in coupled systems where identical
subsystems are connected with communication
delay. In such cases, total uncertainty effect comes
from the combination of uncertainty portion from
each subsystem because the overall transfer func-
tion is obtained by the multiplication of each
subsystem. When # number of identical subsys-
tems is contained in an overall coupled system,
the characteristic function bears higher-order
terms of an uncertainty variable such that

Dn () 07(8) + pn-1(s) 6" (s) +-+po(s)

where p;(s), =0, 1, ---, n is a polynomial, and
8(s) is the uncertainty portion from a single sub-
system. This implies that we need to derive a con-
dition of robust bound of &(s) from this higher-
order polynomial characteristic equation. This
is the issue to be discussed in the paper that has
rarely been presented in control community, to
the authors’ best knowledge. If we follow the
conventional formation of uncertainty where only
a single lumped uncertainty is considered, very
fine tuning of uncertainty bound in each subsys-
tem may not be possible.

The organization of the rest of the paper is as
follows. Section 2 explains preliminary defini-
tions and- notations, section 3 presents main re-
sults on robustness analysis, and section 4 illu-
strates simulation results. Finally, summary and
concluding remarks are made in section 5.

2. System Description

We consider a symmetrically coupled system
in Fig. 1 that consists of two identical subsystems
at site 1 and site 2 connected via communication
channel. There exists time delay for data com-
munication between the two sites. An elementary
requirement is that for arbitrary smooth and
bounded local input, F;, i=1, 2, the two subsys-
tems are to be synchronized even with time-delay,
so that each subsystem has the same or very close
state (i.e., position and velocity) for all time. This
synchronization requirement can be attained by
using a feedback controller which is capable of com-
pensating for any possible de-synchronization er-
ror, caused by model mismatch, numerical error,
or data loss in the course of communication.

Site 1 Site 2
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Data exchonge viu communication

Fig. 1 Schematic of generic coupled systems
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A notable approach for the synchronization
between two subsystems is to use two-way Smith
predictor scheme proposed by Cheong et al.(2005)
shown in Fig. 2, which is effective when plant
model and delay are known precisely. This scheme
achieves stability and performance simply by
tuning a controller, K (s). We will consider the
structure in Fig. 2 as the primary setting for the
symmetrically coupled systems in this paper —
however, the subsequent analysis can be equally
applicable to other forms of controllers. Origi-
nally this scheme was introduced for synchroniz-
ing shared virtual environment and enabling im-
mediate responsiveness and state consistency”.
For details, refer to (Cheong et al., 2005) and
references therein. Although, however, the scheme
in Fig. 2 can be adapted to synchronizing coupled
systems in general class of robotics and control
applications, uncertainties in these practical sys-
tems may deteriorate the control performance and
even destabilize the overall system. Hence, it is
necessary to investigate the robustness properties
of the overall system combined with the proposed
scheme, in order to extend the feasibility of the
scheme to a variety of applications. Implemen-
tation issues like control input saturation may be
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Fig. 2 Structure of motion synchronization control

scheme

1) Responsiveness is the ability of how fast the response
is produced from input, and consistency implies the
condition when every participating site has the same
virtual environment state at the same instance.

also important in practice but these will not be
treated in this paper.

As a preliminary, this section is devoted to
descriptions of main equations and definitions
that characterize the overall control system. For
the time being, we do not consider uncertainties
in the controller, that is, P,(s) =P(s) and R,=
R. Assume F(s) is a second order linear system
having a damping resistance such that

_ 1
" ms*+bs

p(s) (1)
where m and b denote physical mass and damp-
ing coefficients, respectively. Other types of phys-
ical properties may be included such as stiffness
terms. However, we mainly consider the case of
unconstrained motion without spring-like con-
straint. (Actually existence of stiffness term works
favorably to state synchronization.) External in-
puts to the system are F; and F>, which are smooth
and have bounded energy, applied to plants at
site 1 and site 2, respectively. Sum of two uni-
lateral delays, 77 and T3, which represent delays
from site 1 to site 2, and from site 2 to site 1,
respectively, makes total round trip delay, R, that
is, R=Th+ Tz

As shown in Fig. 2, the controller, C;(s), com-
pensates for skewed error between the sites by
comparing states delivered over the network. Note
that it has a fully symmetrical structure, so that
there is no concept of master or slave as in tele-
operator control. To be precise, it gives an equal
chance to every participating user at each site. So
it might be applicable to multi-user haptic simu-
lation, experi-learner skill teaching systems, or
many general synchronization systems that need
n-independent users. Readers may find more
background information about the control struc-
ture from reference (Cheong et al., 2005). The
whole control structure consists of a primary
controller, K(s), and a Smith predictor based
internal model, P, (s) — P, (s) e . The primary
controller, K'(s), adopts simple PD action, that
is, of the form, K (s) =kus+ k», where £y and kp
are velocity and proportional gains, respectively.
Smith predictor based internal model estimates
current state and previous state delayed by time
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unit R with precise knowledge of plant dynamics
and amount of time delay. If the estimation is
perfect, there will be exact cancelation between
the estimated and actual feedback signal delayed
by R, resulting in that the overall feedback sys-
tem eventually becomes a new one that has im-
mediate feedback and performs with desired speci-
fication at a desired level. Refer to (Smith, 1957 ;
Niculescu, 2001) for more information on Smith
predictor. Discrete-time implementation of Smith
predictor based estimation is done by a stack of
buffer that stores a sequence of estimated current
state along with time stamps as shown in Fig. 3.
Also note that, since the current system has a
symmetric placement of Smith predictors, we call
it a two-way Smith predictor structure.

Now, since P,(s) =P(s) and R,=R, the fol-
lowing algebraic equations are obtained from the
structure in Fig. 2.

_ K{(s)
T14K(s)P(s) (1—e™%F)

(Xie™ =X (2)

Ui

Xi=P(s) (ui+ Fe "+ F) (3)

for 7, =1, 2, and %/, where w; is the control
input to P(s). Substituting (3) into (2) and per-
forming simple algebraic manipulation, we get a
transfer relation as

[Xl]:;[hu(s) hm(s)][m] "
Xl o(s, R) | ha(s) hau(s) || B

Dynamic System
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Fig. 3 Discrete~time implementation of Smith
predictor
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where ¢(s, 0R) is the characteristic function giv-
en by

(s, 0R) = (s) + axsye™ % (s)
=(M(s) +K(s))*~K*s) e **

and

(M(s) +K(s)) (M(s)+(1—e"F) K(s))

hu(S) =" M(s)

K(s) (M(s)+(1—e"*F) K(s))

hia(s) =2

M(s)
_ -, K(5) (M(s)+(1—e"*F) K(s))
/’L21(S) =e M(S)
Tn(s) = (M(s) +K(s)) (M(s) +(1—e"F) K(s))

M(s)

where M (s):=ms?+ bs. As is well known, there
are three types of delay systems depending on the
relative degrees of @1 (s) and @:(s) in (5). That is,
(i) if degl[en(s)]>deg[a:(s)], it is a retarded
type, (ii) if deg[an (s) ]=deg[ @ (s) ], it is neutral,
and (iii) otherwise, it is an advanced type. In a
retarded type system, if all the roots of ¢(s,0)
lie in the left half complex plane, then all the
new zeros of ¢ (s, R) for infinitesimal nonzero R
still lie in the left half plane. Hence, for such
a type, the stability is a matter of finding maxi-
mal R for which any zero of ¢@(s,R) is in
the imaginary axis as R is gradually increased.
Refer to references such as (Walton and Marshall,
1987 ; Niculescu, 2001 ; Bellman and Cooke, 1963)
for introductions to various types of time delay
systems. The following theorem simply summa-
rizes stability results on the system by noting that
the current system is of retarded type.

Theorem 1. (Cheong et al., 2005) For the clos-
ed loop system with characteristic function (5),
there exists a constant R >0 such that (i) the
closed loop system is bounded stable if 0< R <
Buap, and (i) |x— 22| — 0 as t — o0 if Fi(¢$)
and Fy(¢) are transient and damping coefficient
is nonzero. W
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Remark 2.1 Even to a step inputs, Fi(#) and
F>(#), the state difference, | x;— %2/, in the steady
state, can become zero whenever the delay condi-
tion is symmetric, i.e., 71= T3 ; otherwise, it is
bounded.

So far, we have assumed that every parameter
in the system is known, which is quite a restric-
tive condition to deal with physical plants. In
case when uncertainty is not negligible, system’s
stability should be re-tested after incorporating
conditions of uncertainties. There are two kinds
of uncertainties conceivable in the system under
consideration. They are: (i) uncertainty in the
amount of delay and (ii) uncertainty in the plant
model. Although the two uncertainties usually go
together, we will isolate them as independent sets
so as to clearly present individual effects. In the
next section, we provide a way to analyze robust
stability under the uncertainties and find a family
of system models which guarantees stability.

3. Robustness Analysis
for Second-Order Uncertainties

We may confront with second-order or higher-
order uncertainties which are not in the defini-
tion of conventional single additive or multi-
plicative uncertainties when identical subsystems
are connected just like the one in Fig. 2. When
two identical subsystems are involved, the uncer-
tain fractions of the subsystems are multiplied,
yielding a second-order polynomial with respect
to the uncertainty fraction. If we model these
higher-order uncertainties in a conventional sin-
gle-order lumped uncertainty, we may loose a
chance to finely tune the corresponding robust
boundary. So, this section is devoted to robust-
ness analysis for the systems having a second-
order uncertainty.

3.1 Robust bound of delay uncertainty

Since time delay possibly changes from the
nominal value and may not be measured precisely
in practice, we need to see the closed loop beha-
vior when there is a delay mismatch. We first de-
fine the delay mismatch by 6R :=R.~— R, where

1199
G.STQ Xg + ul
:C * K (s) -
/ \ P(s) (1670 ) e
e~SRX 1
Cl (s)
(a) Case of R,#+R and P,(s) =P(s)
e.ﬂ‘g XZ + H
F‘“‘t% K@ -
/ P, (s) 1-6"%)
e‘SRX 1

C,(s)
(b) Case of R,=R and P,(s) *=P(s)
Fig. 4 Two cases of controller Ci(s) (It is the same
for Cy(s) by the symmetry.)

R, is the nominal delay that is the best known
value of actual R. As depicted in Fig. 4(a), since
the internal model in the controller utilizes R,
instead of real R, the equation in (2) is modified
as:

_ K(s)
T 14K {(s) P(s) (1— ¢ 5Fn)

Ui

(Xe™T1—X:e™%) (6)

and by combining (6) and (3), a modified trans-
fer relation is obtained with the following char-
acteristic function :

@als, R; SR)
=a:(s) e+ a1 (s) e+ a(s)

(7

where
ax(s) =K3(s) e7#
ai(s)==2K(s) (M(s) +K(s)) e ®—2K*(s) e

as(s) = (M*(s) +2K (s) M (s) + K*(s))
+QK(SYM(s) +K*(s))e™™

M(s):=P'(s) =ms*+bs

This is a characteristic function where quasi-
polynomial, a.(s), =1, -+, 3 is multiplied by
commensurate delay mismatch, ¢®®. If SR=0,
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pals, R; 8R) simply reduces to ¢(s, R). Note
that (7) is a second order algebraic polynomial
with respect to ¢ °®, This is a result from com-
bining two identical subsystems. We call @u(s,
R ; 8R) an uncertainty characteristic polynomial

with respect to e~

Definition 1. The system with characteristic
equation in (7) is practically stable with respect
to OR, when there exists a bound B(S6R) such
that roots of (7) are all in the left half plane for
every SREB(SR).

By factorizing (7), two kinds of solutions of
04(s, R; 6R) =0 for ¢

lows after some algebraic manipulation.

are obtained as fol-

8RS . M(s) Rs Rs/2s

e —< K (s) >e +e +1 and o
—8RS __ M(s) Rs __ _R/2s

e ( 70 +1> R 4|

In order to compute the stable bound B(§R),
the first step to take is to compute imaginary roots
of (8), since they represent crossing points be-
tween stable and unstable domains. The imagina-
ry roots are obtained by substituting j=j/w into
the magnitude relation of (8) as follow.

l—. %éjw >ejWR+ej"’R/2+1 and
1_' /ZU)) +l> R __ lee/z_*_l‘ ©)

As can be seen, the amount of delay mismatch
has nothing to do with computing the crossing
frequencies. For clarity of notation, crossing fre-
quencies from the first part in the above are
denoted by w=w, 1=1, 2, ---,
the second part are denoted by w=w;, /=1, 2,
---, #. These are obtained through sweeping w
from zero to infinity and selecting values that

m, and those from

satisfy the above magnitude conditions (Michiels
and Niculescu, 2003). An interesting fact is that
for given R, there are only finite imaginary roots.
This can be simply conjectured by using the bi-
linear transform proposed by Thowsen (Thowsen,
1981) as
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e‘Rs=< 1+ T >2
1—Ts

where 7 is a constant that is directly related to
delay R. If we apply this relation into (9), we
obtain a new polynomial equation with finite or-

S=jw

der, which means the number of imaginary roots
of (9) are finite, yielding a finite number of roots.

After finding the crossing frequencies, next is
to determine the bound of ¢R for which system
keeps stability, using phase angle condition of
(8). Applying the phase angle condition to (8),
we get conditions of §R that are consistent with
the imaginary roots as follows.
—2kn 1

Wi ——u:

Z [( ——% 82’;)) +1 ) et gl 4 1]

SRY=
(10)

and

—2kr 1

wi Wi

Z [<M+ 1 > Rt pRwi2 | l:l
K (] w.)

where £ is any integer, and the superscript (),
i=1, 2, explicitly denotes that the term is related
to the 7-th case in (8). The above equation im-
plies that at each crossing frequency, s=jw; or
$=jw, an infinite number of crossovers between
left and right half complex planes occurs as R
varies.

SR =
(11)

Theorem 2. Practical stability of the system with
characteristic equation given in (7) is guaranteed
for delay mismatch SREB(SR) with B(SR)
given by

={8R|max (8 Rmax, —

where R and SRpax are minimum positive
and maximum negative constants among the val-
ues that satisfy (10) or (11).

R) <8R<ORin} (12)

Proof. The considered system, initially stable
when SR is zero, becomes unstable as SR is
increased or decreased beyond a certain bound.
Just before the system becomes unstable, some
poles of it must pass through the imaginary axis.
These poles must belong to the sets of jw; or
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jw, obtained by Eq.(9), and each imaginary
pole determines the possible values of SR via
relations (10) or (11). Among such values of SR,
the minimum positive of OR, that is, 6 Rin, yields
the first crossover as 0K is increased from zero
to positive infinity. Similarly, the maximum neg-
ative of OR, that is, 6 Rmax, yields the first cros-
sover as OR is decreased from zero to negative
infinity. Hence, by the assumption that the char-
acteristic equation is stable for SR =0, the first
touchdowns of roots to the imaginary axis, as
OR varies in the negative and positive directions,
imply the lower and the upper stable bounds of
OR. Thus, defining 6 Rmax and SR as the maxi-
mum negative and the minimum positive values
among the combined set of SR} and SR® for
every 7, k, and /, we can obtain robust bound of
B(6R). Furthermore, since nominal delay, R,
takes only positive values, additional condition to
be met is 6K =—R. Therefore, every SR in the
bound B(SR) in (12) satisfies the stability con-
dition of characteristic function (7). B

Numerical example 1. This example demonstra-
tes how to compute the robust bound of B(8R).
We consider a plant, P(s)=1/(s*+0.2s) and
two choices of controllers, i.e., K(s) =2s5+2 and
K (s) =55+20. For each controller, we compute
crossing frequencies and delay uncertainty bound
as shown in Figs. S and 6.

For this purpose, using (9) the crossing fre-
quencies, w; and w,, are determined as a function
of R for both cases of controllers and plotted in
Figs. 5(a) and 6(a). From the figures, we can
verify that if tuple (w; R) is a solution, then so
is (wi, R+27k/w:), kEZ*, which can also be
mathematically verified by combining relations in
(8) and (9). Also note that the crossing frequen-
cies tend to increase as the controller gains are
getting larger.

Using the computed crossing frequencies and
the equations in (10) and (11), we get Rmax and
SR%n, and consequently the corresponding ro-
bust delay margin B(SR) as shown in Figs. 5(b)
and 6(b). In the figures, B(JR) is wider for small
values of R and reduces substantially for large

Cross freq [rad/s}
-y

N

5 2 25

0 0.5 1 1.
Delay [s]

(a) Crossing frequencies

Delay uncertainty bound fs]

0 05 1 185 2 25
Delay {s}

(b) Delay uncertainty bound, B (S8R)
Fig. 5 Crossing frequencies and delay uncertainty
bound (k,=2, kpy=2)

values of K. Comparing both cases of controllers,
we find out that higher controller gains shrink
robust delay bound significantly although it may
improve synchronization capability up to certain
values. Further increase of controller gains pushes
some of poles near to the imaginary axis, which
results in poor control performance. Note that the
ranges of horizontal axes between Figs. 5 and 6
are different. This is because the maximum al-
lowable delays, Ry, for the two cases are around
2.5s and 0.63s, respectively, and it is not necessary



1202

03
&
&
o.2f 4 i
= - *
E s .
5 e,
g o1 oy S AT
£
* d
g SR L™
§ o Ve
z .
3 /‘ |
/ ’
*
-02 * n,*/a" |
L]
delta R=-R "&*
- * 'S
-0.3 : : : - :
0.1 0.2 0.3 0.4 05 0.6
Delay [s]
(a) Crossing frequencies
16
o Q%
14 . L "
* W, W, Y
L3 2 3 £l
12} " e .
#*
*
= 10 - I TR
3 . l
E o - a
e Y T R
E 8 Q“nu‘h"é& . :&‘* .
"3 L4 .”ﬁﬁ *‘*#5 N
3 nu W, 0“ *’é‘ﬁ
S et . N TR
#;‘ N
Q¢&§
¥ g
4t ‘;#4&“;;
2}
0 . ; L . ;
4 a1 0.2 0.8 0.4 05 0.6

Delay is]
(b) Delay uncertainty bound, B{(SR)
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to consider delay values beyond the nominal
stability limit.

3.2 Robust bound of plant uncertainty

For the case when the controller utilizes P, (s),
different from P(s), as shown in Fig. 4(b), sta-
bility is possibly affected by the amount of plant
mismatch. To deal with this problem, we first
define plant deviation as A(s):=P(s) —Pu(s),
while the amount of delay is assumed to be exact
such that R,=R to focus on the pure effect of
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plant uncertainty to the stability. In the subse-
quent analysis, we provide a way to determine a
tolerable amount of A(s), for which stability is
guaranteed, and the corresponding geometrical
meaning is given as well.

Here we further assume that the structure of
plant dynamics is known in advance. That is, for
P(s)=1/(ms®+bs), its model can be estimated
as Pu(s) =1/ (mos®+bss). The condition of ex-
actly known constant delay might be rather strict
in regards to modern network behavior, but it is
certainly achievable by using a simple buffering
technique with a cost of increased time delay. For
example, as addressed by Kosuge et al. (1996)
statistically known maximal delay value is set
as the artificial constant delay value by holding
actual data delivered earlier than by the maximal
delay value until the artificial delay value is met.

Employing the controller with plant uncertain-
ty shown in Fig. 4(b), we have a modified char-
acteristic function as follows.

oo(s, R; @) =c(s) +a(s) g(s) +als) g*(s) (13)
where g (s):=P,(s)/P(s) and

a(s) =K%s) e+ K(s){2M (s) —K(s)} e *+ M*(s)

a(s)=—2K%(s)e™ 2K (s){M(s) —K(s)} ™™
+2K(s) M(s)

co(s) =K%(s) e'“s—-AZKz(s) e B+ K2(s)

Eq.(13) shows the characteristic function is a
second-order rational polynomial with respect to
g(s). Thus, similarly, we call ¢,(s, R; g) an
uncertainty characteristic polynomial with respect
to g(s).

If ¢ (s) =1, implying P,(s) =P(s), the charac-
teristic function @, (s, R ; q) reduces to p(s, R).
Since g(s)|s==0Y wE Re implies a trivial so-
lution, we may rewrite the form of @»(s, R; q)
as

oo(s, R; @)

2 a(s) a2 +als) as) +anls)) P

which makes a second-order polynomial with
respect to ¢ ' (s) with rational coefficients, ¢;(s).
As defined in the previous section, the amount of
uncertainty can be written as
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P(s)

P =1+6(s) (15)

g (s)=
where 8 (s):=A(s)/P,(s) is the normalized amount
of uncertainty in the plant. There are two kinds of
solutions to @(s, R ; q) as follows.

Als) = —ci(s) +/ck( 3254@( s) co(s) and
2 (16)
A )_—a s) —vck(s) —4c:(s) cols)
$I= 2¢(s

for ¢2(s) #0. If we plug s=jw into the solutions,
AGw) and A (jw) become the loci pertaining
all the imaginary roots that are on the stability
boundary. Hence, in order for the system to be
stable, the following relation must be satisfied :

g7 (Gw) —A(jw) |0, and (a7
g Gw) —A(jw)|#0, VwERe
Substituting (15) into (17) yields
|6 (jw) — w)|#0, and
’ (18)
|6 ;w)— w) |#0, VwERe
where A;=A:—1, i=1, 2. Because the system is
stable when &(jw)=0, Eq. (18) is identical to
inequalities :
18 Gw)|<|AGw) |, and
: (19)
[6Gw) <] (jw)l, VwERe

Two classes of stability bound for & (jw) can be
defined :
(ii) frequency dependent bound. The frequency

(i) frequency independent bound ; and

independent bound is a tolerable uncertainty
bound determined by the maximum disk centered
at the origin such that

Be(8(6w)) ={8Gw)| [6Gw)|<p} (20)
where p=min1,2, vawere(|:Gw)|).

The above frequency independent bound satis-
fies inequality in (19) but is sometimes too con-
servative. Fig. 7(a) shows a schematic of fre-
quency independent bound for & (jw). Since the
disk represents a very limited region around the
origin, the plant model, P,(s), must restrictively
be very close to the actual plant dynamics, P(s).
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(b) Frequency dependent bound
Fig. 7 Two definitions of plant uncertainty bound

Also the dynamic structures between the model
and the plant should be exactly the same. For
example, only if P(s) and P,(s) have the same
form such that P(s) =1/ (ms®*+bs) and P,(s) =
1/ (m0s%+ bos), the normalized model deviation,
8 (jw) ={(mo —m) s> + (bo —b) s }/ (ms® +bs),
has values inside the disk at extreme frequencies
such that

)=(bo—
|lim & Gw) =

w—oo

Igggéi(jw b)/b|<p and

(mo—m) /m|<p.

Otherwise, 8 (jw) does not reside in the disk.

On the other hand, the frequency dependent
bound provides a more realistic measure of un-
certainty, allowing an exact uncertainty bound
along the frequency variation. It is represented as
a single inequality as follows, by combining two
inequalities in (19).
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Bo(8(iw)) ={8Gw)| 18(w)|<min(|A(w), |A(jw)]),

YwERe) (a1)

Since the magnitude of A;(jw) is varying as a
function of frequency, so is the frequency depen-
dent bound. Geometrically, as shown in Fig. 7
(b), the frequency dependent bound implies the
maximum radius of a circle along the loci of
A:(Gw), i=1, 2 which is smaller than the distance
from the origin to the point of the circle center.
Numerical example 2. In order to demonstrate
how to determine the robust bound of &6{(jw),
we take two examples with two different sets of
primary controller gains ; that is, (1) K (s) =2s+
2, and (2) K(s)=55+20, just the same as the
numerical example 1 in the previous subsection.
The dynamics of plant is P(s)=1/(s*+0.2s),
and time delay is set to R£=0.3s. For both cases
of controllers, the corresponding loci of A (Fw)
and A (Fw) ¥V w >0 are shown in Fig. 8 using the
formula in Eq. (16).

After scanning the magnitudes of & {(jw), we
find out that frequency indepéndent robust bounds
of 8(jw) are disks centered at the origin with
radii 0=0.86 and 0=0.48 for the two cases, re-
spectively.(The larger gain tends to shrink robust
bound in general.) Sometimes it is favorable to
know the frequency independent robust bound of
g (Fw), rather than that of §(jw) or ¢ '(Jw).
This is easily derived as follows. Since | 8§ Gw) |=
[¢7 Gw) —1|< p, we have

lqGw) —11<plaGw)], (o<1) (22)

which is again a disk in the complex plane as
lq Gw) —aol<p/(1—p?) (23)

where go=1/(1— 0% . For the case of 0=086, the
disk representing the robust bound of g Gw) is
centered at 3.84-+0; with radius of 3.30.

The plots of frequency dependent margins are
given in Fig. 9 along with frequency axis for
the two cases. The minimum value of A;=A—
1, =1, 2 is the frequency independent margin of
S(w). Assuming Pp'(s) =M,(s) =mos*+ bos,
we have &(s)=[(mo—1)s*+ (hy—0.2)s]/(s*+
0.25). In the first case shown in Fig. 9(a), the

Joono Cheong and SangJoo Kwon

Imaginary

Imaginary

Real
(b) K(s)=5s5+20
Fig. 8 Frequency independent bound of plant un-

certainty when R=0.3s

robust bound of & (fw) maintains the unity value
around the zero and the infinite frequencies but
drops a little to 0.86 at s=14.177. These condi-
tions yield

(a) 131551|6(jw)|=|b0—0.2|so.2,

(b) Tim 6 (i) | =| mo—1]<1, and

(24)
(c) 16(14.175)|<0.86
(mo—1)% | (B—0.2)2
0.8562 + 12.142 !
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Fig. 9 Frequency dependent bound of plant uncer-
tainty when R=0.3s

which are graphically depicted in Fig. 10(a). So
approximately any choice of the parameter pair
(mo, bo) inside the region guarantees the robust
stability. For the second case, the robust bound of
8(jw) is unity up to around w=2 but drops
down to 0.48 at w=11, which is smaller than
that of the first case. See Fig. 9(b). Now repeating
the same procedures, we can approximate a re-
gion of parameter pairs for robust stability de-
fined by the relations :

b

(mo-1)°
0.856%

(by -0.2)°
12.142

04

02 |- A

Mg

(a) K(s)=2s+2

(mo-1f | (bo-02°
0.467 5.287
\

/ /l" ) / ’//'
i 4 P 7 /
4 / e ’/‘;/? // -
S

// ,'/ / /[ // £ 4 ¢

0 1 2

(b) K(s)=5s+20

Fig. 10 Uncertainty bound in parameter space

04

02 b---

(a) lsig)lla(jw)|=lbo—o.z|so.2,

(b) lim | 8 (jw)|=|mo—1|<1, and (25)
(c) 16(11.05)|<0.48
 me—1)? | (b—02)*
0482 | 528082 !

which are graphically given in Fig. 10(b). In this
case, the robust region is narrowed very much
compared to that of the first case. Conclusively,
while the magnitude of controller gain may help
expedite the synchronization, it tends to reduce
robust bounds not only of the delay uncertainty
but also of the plant uncertainty. So, we may have
to negotiate the performance and stability to a
suitable point.

Remark 3.1 As mentioned at the beginning of
this section, for the most general cases, two un-
certain factors, SR and &(s) must be treated at
the same time. Unfortunately the relation between
SR and 8(s) is nonlinear and complex, and find-
ing both bounds with one numerical procedure
is also another huge research topic. So, as a
tentative technique, we introduce brief numerical
procedures that roughly guide how to find both
uncertainty bounds in general mixed cases by
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extending section 3.2.

For general cases, ¢o(s) through ¢2(s) of (13)
possess delay uncertainty, e % First, fix R to
small number, say 7 >0. Then perform the fre-
quency sweeping method as was done in Numeri-
cal Example 2. This gives uncertainty bound &(s)
for §R=7o. Increase 7, to 7 and repeat the fre-
quency sweeping method to find §(s) for 6R=
7. Ultimately, repetition of these numerical pro-
cedures can yield uncertainty bounds of § (s)
and S8R simultaneously, even though it consumes
much time and energy.

4, Simulation Verification

In order to verify the theoretical results on the
robustness analysis in the previous section, we
carry out time-based simulations. The dynamics
of the considered system is P(s) =1/{(s?+0.2s),
which has been utilized throughout the examples
in section 3. The primary controller is chosen as
K (s)=55+20. We assume that the communica-
tion delay is symmetrically given such that 7i=
T>=0.15s, which makes R=0.3s. The inputs to
the system are set to Fi(¢)=sin(¢) and F(f) =
—sin(0.4¢+1).

4.1 Robustness under delay uncertainty

For the given conditions, that is, K (s) =5s+
20 and R=0.3, the robust bound of is estimated
approximately as 0.08s by referring to the chart in
Fig. 6. To check if it is a good estimation, we run
the simulation for two cases of §R=0.05s (R,=
0.35s) and SR=0.09s (R,=0.39s), one of which
is within the robust delay bound and the other is
not. As shown in Fig. 11, if R is chosen to be
smaller than the robust margin, the closed loop sys-
tem is stable, and otherwise, it is unstable. Under
the given controller gains, if the maximum allow-
able delay margin is not sufficient enough to cover
the possible amount of delay mismatch in prac-
tice, then the controller gains need to be reduced
so as to warrant a sufficient robust delay margin.

4.2 Robustness under plant uncertainty
To test the correctness of the computed robust

Position {m]
1N

=13

|}

50 100 150 200
Time [s]

(a) 6R=0.05s

Posttion [m]

Time [s]
(b) 6R=0.09s
Fig. 11 Simulation result under delay uncertainty

plant uncertainty bound, choose a plant model,
Po(s) =1/ (mys*+ bos) , with two parameter pairs
as

B ' __ 0155
(1) (mo, b) =(1.0, 0.35) = 8(s) =775
_ =025
(2) (mo, bo) =(1.0, 0.45) = 5(s) = 4025

where the first parameter pair is inside the ro-
bust bound, while the second parameter pair is
outside the robust bound.(Refer to Fig. 10(b))
Since mp is equal to true value and only bp has
a deviation from true value, a possible violation
of the robust region occurs in the low frequency
region. In the first case, because gzrglé(jw)|=
0.75, the chosen plant model is in the robust
region. But the second case is not in the robust
region since B%l&(}'w)I:l.%. Simulation re-
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Fig. 12 Simulation result under plant uncertainty

ults in Fig. 12 show clear comparison between the
two cases. As expected, the first parameter pair
presents a well-synchronized bounded behavior,
whereas the second parameter pair shows an un-
bounded result.

5. Summary and Coencluding
Remarks

In this paper we presented robustness analysis
for a coupled dynamic system having identical
subsystems under the control of synchronization
feedback scheme. Time delay was included in the
model to signify the effect of the data communi-
cation.

We defined two possible uncertainties occurred
in the considered control structure ; that is, the
uncertainties in the amount of delay and the plant

parameters. Because all subsystems contained in
the coupled system are identical, those uncertain-
ties appear in the characteristic function, and
we can arrange it in the descending order of the
uncertainty parameter. So it is a higher-order
polynomial with respect to the uncertainty vari-
able. We particularly focused on the second-order
case, where two identical subsystems are involv-
ed. For this case, delay and plant uncertainty
bounds were explicitly calculated by solving the
second~order characteristic polynomials.

The robust delay bound was defined using the
minimum positive and maximum negative values
of delay uncertainty, for which the characteristic
root touches the imaginary axis for the first time
as the delay uncertaintif is varied from zero to
positive and negative directions. As the controller
gains and the amount of delay increase, the al-
lowable delay uncertainty tends to decrease. The
robust bound for plant uncertainty was classifi-
ed by the two definitions: frequency indepen-
dent bound and frequency dependent bound. The
former is a conservative bound that is defined in
the form of a disk region, while the latter is more
accurate bound which provides maximal allow-
able uncertainty along the frequency variation.
For the system represented by a mass with damp-
ing resistance, we quantitatively illustrated how
to obtain the uncertainty bound in the parameter
space. And the analyzed results were confirmed
by numerical simulations.

We believe this paper contributes to formulat-
ing and analyzing robustness issues in a coupled
system with identical subsystems. Though only a
simple dynamic system has been considered in the
article, the sirategic method addressed here is
modifiable and applicable to general systems and,
thus, can be a ground tool for similar researches.

Acknowledgments

This research was supported by the Korea Re-
search Foundation Grant (KRF-2005-003-D00104)

References

Anderson, R. J. and Spong, M. W., 1989, “Bi-



1208

lateral Control of Teleoperators with Time De-
lay,” IEEE Trans. on Automatic Control, Vol. 34,
No. 5, pp. 494~ 501.

Bellman, R. and Cooke, K. L., 1963, Differen-
tial- Difference Equations, Academic Press.

Changhong, W., Lixian, Z. and Qiyong, W.,
2004, “Controller Design Based on Model Pre-
dictive Control for Real-Time Tracking Syn-
chronization in Closed-Loop Control Via Inter-
net,” in Proc. of IEEE Int. Conf. on Control Ap-
plications, pp. 260~265.

Cheong, J., Niculescu, S.-1., Annaswamy, A.
and Srinivasan, M. A., 2005, “Motion Synchro-
nization in Virtual Environments with Shared
Haptics and Large Time Delays,” in Proc. of
Symp. on Haptic Interfaées for Virtual Environ-
ment and Teleoperator Systems, pp. 277~282.

Kazerooni, K., Tsay, T. and Hollerbach, K.,
1993, “A Controller Design Framework for Tele-
robotic Systems,” IEEE Trans. on Control Sys-
tem Technology, Vol. 1, No. 1, pp. 50~62.

Kosuge, K., Murayama, H. and Takeo, K.,
1996, “Bilateral Feedback Control of Tele-Mani-
pulators Via Computer network,” in Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 1380~ 1385.

Lawrence, D. A., 1993, “Stability and Trans-
parency in Bilateral Teleoperation,” IEEE Trans.
on Robotics and Automation, Vol.9, pp. 624~
637. '

Liu, H. H. T. and Sun, D., 20085, “Uniform Syn-
chronization in Multi-axis Motion Control,” in
Proc. of American Control Conference, pp. 4537~
4542.

Lung, G. M. H., Francis, B. A. and Apkarian,
J., 1995, “Bilateral Controller for Teleoperators
with Time Delay Via-Synthesis,” IEEE Trans. on
Robotics and Automation, Vol. 11, No. 1, pp. [05~
116.

Michiels, W. and Niculescu, S.-1., 2003, “On
the Delay Sensitivity of Smith Predictors,” Int. J.
of Systems Science, Vol. 34, pp. 543~551.

Niculescu, S. -1., 2001, Delay Effects on Stabil-
ity : A Robust Control Approach. Springer.

Joono Cheong and SangJoo Kwon

Niemeyer, G. and Slotine, J. -J. E., 1991, “Sta-
ble Adaptive Teleoperation,” IEEE Journal of
Oceanic Engineering, Vol. 16, No. 1, pp. 152~
162.

Rodriguez-Angeles, A. and Nijmeijer, H., 2004,
“Mutual Synchronization of Robots via Estimat-
ed State Feedback : A Cooperative Approach,”
IEEE Trans. on Control Systems Technology,
Vol. 12, pp. 542~554.

Satacesaria, C. and Scattolini, R., 1993, “Easy
Tuning of Smith Predictor in Presence of Delay
Uncertainty,” Automatica, Vol. 29, pp. [595~1597.

Smith, O.J. M., 1957, “Closer Control of Loops
with Dead Time,” Chem. Eng. Prog., Vol. 53, No.
5, pp- 217~219.

Sun D. and Feng, G., 2003, “A Synchroniza-
tion Approach to the Mutual Error Control of a
Mobile Manipulator,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, pp. 3005~
3010.

Sun, H. and Chiu, G.T.-C., 2002, “Motion
Synchronization for Dual-Cylinder Electrohy-
draulic Lift Systems,” IEEE/ASME Trans. on
Mechatronics, Vol. 7, pp. 171~ 181.

Taoutaou, D., Niculescu, S.-I. and Gu, K.,
2003, “Robust Stability of Teleoperation Schemes
Subject to Constant and Time-Varying Com-
munication Delays,” in Proc. of IEEE Conf. on
Decision and Control, pp. 5579~ 5584.

Thowsen, A., 1981, “An Analytic Stability Test
for a Class of Time-Delay Systems,” IEEE Trans.
on Automatic Control, Vol. AC26, No. 3, pp. 735~
736.

Walton, K. and Marshall, J. E., 1987, “Direct
Method for tds Stability Analysis,” EE Proceed-
ings : Part D, Vol. 2, No. 2, pp. 101~107.

Yamanaka, K. and Shimemura, E., 1987, “Ef-
fects of Mismatched Smith Controller on Stability
in Systems with Time-Delay,” Automatica, Vol.
23, No. 6, pp. 787~791.

Zhang, W. and Xu, X., 2001, “Analytical De-
sign and Analysis of Mismatched Smith Predic-
tor,” ISA Transactions, Vol. 40, pp. 133~138.



