Relationship between Weather-Resistance and Mixing Ratio of Mill-Base and Let-Down Silicone/Acrylic Resins

안료분산용 및 희석용 실리콘/아크릴수지의 배합비와 내후성과의 상관관계

  • Jo Hye-Jin (Department of Chemical Engineering, Myongji University) ;
  • Shim Il-Woo (Department of Chemical Engineering, Myongji University) ;
  • Hahm Hyun-Sik (Department of Chemical Engineering, Myongji University) ;
  • Park Hong-Soo (Department of Chemical Engineering, Myongji University)
  • 조혜진 (명지대학교 공과대학 화학공학과) ;
  • 심일우 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과) ;
  • 박홍수 (명지대학교 공과대학 화학공학과)
  • Published : 2006.07.01

Abstract

In order to investigate the effect of the composition of weather-resistant coatings on physical properties, three different weather-resistant coatings were prepared by varying the ratio of a mill-base silicone/acrylic resin and let-down silicone/acrylic resin in weight ratios of 2 : 8, 3 : 7, and 4 : 6. The physical properties and weather-resistance of the prepared coatings were tested. It was found that the thermal stability, salt spray exposure, and weather-resistance were improved with increasing the amount of silicone. The optimum mixing ratio of mill-base silicone/acrylic resin to the let-down silicone/acrylic resin was 2 : 8. The coating containing silicone component of 30 wt% was found to be suitable as high weather-resistant coatings.

실리콘/아크릴수지를 기반으로 한 내후성 도료의 조성이 물성에 미치는 영향을 연구하기 위하여 안료분산 용 및 희석용 실리콘/아크릴수지의 배합비를 중량비율 2 : 8, 3 : 7, 4 : 6 의 3종으로 변화시키면서 내후성 도료를 제조하였다. 제조된 도료의 도막물성 및 내후성이 판단할 수 있는 각종 도막실험을 실시한 결과, 실리콘 성분함량이 증가할수록 열적안정성, 염수분무 및 내후성 등이 향상되었으며, 적정배합비는 2 : 8임을 알 수 있었다. 또한 실리콘 성분을 30 wt% 함유한 도료는 고내후성을 보유함을 확인하였다.

Keywords

References

  1. M. Zielecka and E. Bujnowska, Pro. Org. Coat., 55, 160 (2006) https://doi.org/10.1016/j.porgcoat.2005.09.012
  2. T. Matsuura and W. Egoshi, Toso. Kogaku, 40, 406 (2005)
  3. N. D. Tran, N. K. Dutta, and N. R. Choudhury, Polym. Degrad. Stabill., 91, 1052 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.07.008
  4. D. Stoye and W. Freitag, Paints, Coatings and Solvents, 2nd ed., Wiley-VCH, New York, pp 262-266 (1998)
  5. C. H. Simpson, C. J. Ray, and B. S. Skerry, J. Protec. Coat.Linings, 8, 28 (1991)
  6. T. Endo, Development and Applications of New Reactive Monomers, Tokyo CMC, pp 266-275 (1993)
  7. Kanegafuchi Kagaku Kogyo Co., U. S. Patent 4,975,488 (1990)
  8. V. L. Rao and G. N. Babu, Eur. Polym. J., 26, 227 (1990) https://doi.org/10.1016/0014-3057(90)90193-8
  9. Kanegafuchi Kagaku Kogyo Co., U. S. Patent 5,891,958 (1999)
  10. H. S. Park, I. M. Yang, J. P. Wu, M. S. Kim, H. S. Hahm, S. K. Kim, and H. W. Rhee, J. Appl. Polym. Sci, 81, 1614 (2001) https://doi.org/10.1002/app.1592
  11. H. S. Park, D. J. Chung, H. S. Hahm, S. K. Kim, W. B. Im, and S. J. Kim, J. Chem. Eng. Jpn., 37, 158 (2004) https://doi.org/10.1252/jcej.37.158
  12. H. S. Park, S. R. Kim, H. J. Park, Y. C. Kwak, H. S. Hahm, and S. K. Kim, J. Coat. Technol., 75, 55 (2003)
  13. D. J. Liaw and W. C. Shen, Polym. Eng. Sci, 34, 1297 (1994) https://doi.org/10.1002/pen.760341610
  14. W. A. Finzel, J. Coat. Technol., 52, 55 (1980)
  15. G. Kaempf, J. Coat. Technol., 51, 51 (1979)
  16. H. Mayer, J. Oil Colour Chem. Assoc., 81, 89 (1998)