Abstract
The properties of tunable dielectric materials on RF frequency band are important high tunability and low loss for RF variable devices, variable capacitor, phased array antenna and other components application. Various composite of BST(barium strontium titanate) ratio combined with other non-electrical active oxide ceramics have been formulated for such uses. We present the tunable properties and Curie temperature on BST thick films. The grain growth of the weight ratio of $BaTiO_3$ increased. This can be explained by the substitute $Sr^{2+}$ ion for $Ba^{2+}$ ion in the $BaTiO_3$ system. The Curie temperature was shifted to lower temperature with increasing $SrTiO_3$in the $BaTiO_3-SrTiO_3$ system, because of decreasing the lattice constant. Also, the dielectric constant, tunability and K-factor of $(Ba_xSr_{1-x})TiO_3$ at over the Curie temperature decreased, at over the $60^{\circ}C$ fixation, maximum dielectric constant at Curie temperature and hence sharper phase transformation occurred at Curie temperature. The result were interpreted as a process of internal stress relaxation resulting form the increase of $90^{\circ}$ domains induced the BST. As a result, It is concluded that over the Curie temperature, frequency response and DC field effect for the tunable properties of BST thick film are suppressed by the transition broadening. For the application of tunable devices, that the curie temperature was investigated to be increased.