기약인 all-one 다항식에 의해 정의된 GF(2$^m$)에서의 효율적인 비트-병렬 곱셈기

Efficient bit-parallel multiplier for GF(2$^m$) defined by irreducible all-one polynomials

  • 장구영 (한국전자통신연구원 정보보호연구단) ;
  • 박선미 (고려대학교 수학과) ;
  • 홍도원 (한국전자통신연구원 정보보호연구단)
  • 발행 : 2006.07.01

초록

곱셈기의 효율성은 정규 기저(normal basis), 다항식 기저(polynomial basis), 쌍대 기저(dual basis), 여분 표현(redundant representation) 등과 같은 유한체 원소의 표현 방법에 주로 의존한다. 특히 여분 표현에서의 제곱 및 모듈로 감산(modular reduction)은 단순한 방법에 의해 효율적으로 수행될 수 있기 때문에, 여분 표현은 흥미로운 유한체 표현 방법이다. 본 논문은 여분 표현을 사용한 기약인 all-one 다항식에 의해 정의된 GF(Zm)에서의 효율적인 비트-병렬 곱셈기를 제안한다. 또한 제안된 비트-병렬 곱셈기의 효율성을 향상시키기 위해, Karatsuba에 의해 제안된 잘 알려진 곱셈 방법을 변형한다. 결과로써, 제안된 곱셈기는 all-one 다항식을 사용한 기존의 알려진 곱셈기들과 비교해 적은 공간 복잡도(space complexity)를 가지는 반면에, 제안된 곱셈기의 시간 복잡도(time complexity)는 기존의 곱셈기와 유사하다.

The efficiency of the multiplier largely depends on the representation of finite filed elements such as normal basis, polynomial basis, dual basis, and redundant representation, and so on. In particular, the redundant representation is attractive since it can simply implement squaring and modular reduction. In this paper, we propose an efficient bit-parallel multiplier for GF(2m) defined by an irreducible all-one polynomial using a redundant representation. We modify the well-known multiplication method which was proposed by Karatsuba to improve the efficiency of the proposed bit-parallel multiplier. As a result, the proposed multiplier has a lower space complexity compared to the previously known multipliers using all-one polynomials. On the other hand, its time complexity is similar to the previously proposed ones.

키워드

참고문헌

  1. K.-Y. Chang, D. Hong, and H.-Y. Cho, 'Low complexity bit-parallel multiplier for GF($2^m$) defined by all-one polynomials using redundant representation,' IEEE Trans. Computers, Vol. 54, no. 12, pp. 1628-1630, Dec. 2005 https://doi.org/10.1109/TC.2005.199
  2. G. Drolet, 'A New Representation of Elements of Finite Fields GF($2^m$) Yielding Small Complexity Arithmethic Circuits,' IEEE Trans. Computers, Vol. 47, no. 9, pp. 938-946, Sep. 1998 https://doi.org/10.1109/12.713313
  3. W. Geiselmann and R. Steinwandt 'A Redundant Representation of G F($q^n$) for Designing . Arithmetic Circuits,' IEEE Trans. Computers, vol. 52, no. 7, pp. 848-853, July 2003 https://doi.org/10.1109/TC.2003.1214334
  4. M. A. Hasan, M. Z. Wang, and V. K Bhargava, 'A modified Massey-Omura parallel multiplier for a class of finite fields,' IEEE Trans. Computers, Vol. 42, no. 10, pp. 1278-1280, Oct. 1993 https://doi.org/10.1109/12.257715
  5. T. Itoh and S. Tsujii, 'Structure of parallel multiplications for a class of fields GF($2^m$) ,' Information and Computers, Vol. 83, pp. 21-40, Oct. 1989 https://doi.org/10.1016/0890-5401(89)90045-X
  6. D. E. Knuth, The Art of Computer Programming, Addison Wesley, Vol. 2, 1998
  7. C. H. Kim, S. Oh, and J. Lim, 'A new hardware architecture for operations in GF($2^n$),' IEEE Trans. Computers, Vol. 51, no. 1, pp. 90-92, Jan. 2002 https://doi.org/10.1109/12.980019
  8. C. K. Koc and B. Sunar, 'Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields,' IEEE Trans. Computers, Vol. 47, no. 3, pp. 353-356, Mar. 1998 https://doi.org/10.1109/12.660172
  9. M. Leone, 'A new low complexity parallel multiplier for a class of finite fields,' Proc. Cryptographic Hardware and Embedded Systems, LNCS 2162, pp. 160-170, Paris, France, May 2001
  10. C. -Y. Lee, E. -H. Lu, and J. -Y. Lee, ' Bit-parallel systolic multipliers for GF($2^m$) fields defined by all-one and equally spaced polynomials,' IEEE Trans. Computers, Vol. 50, no. 5, pp. 385-393, May 2001 https://doi.org/10.1109/12.926154
  11. R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, New York: Cambridge Univ. Press, 1994
  12. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of finite fields, Kluwer Academic, 1993
  13. J. Omura and J. Massey, 'Computational method and apparatus for finite field arithmetic', U. S. Patent Number 4,587,627, 1986
  14. A. Reyhani-Masoleh and M. A. Hasan, 'A new construction of Massey-Omura parallel multiplier over GF($2^m$),' IEEE Trans. Computers, Vol. 51, no. 5, pp. 511-520, May 2002 https://doi.org/10.1109/TC.2002.1004590
  15. H. Wu, M. A. Hasan, I. F. Blake, and S. Gao, 'Finite field multiplier using redundant representation,' IEEE Trans. Computers, Vol. 51, no. 11, pp. 1306-1316, Nov. 2002 https://doi.org/10.1109/TC.2002.1047755