Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei (School of Electrical and Automation Engineering, Nanjing Normal University) ;
  • Feng Chunmei (School of Electrical and Automation Engineering, Nanjing Normal University) ;
  • Xu Shengyuan (Department of Automation, Nanjing University of Science and Technology) ;
  • Chu Yuming (Department of Mathematics, Huzhou Teacher's College)
  • Published : 2006.08.01

Abstract

This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Keywords

References

  1. C.-T. Chen, Linear System Theory and Design, Holt Rinehart and Winston, New York, 1984
  2. J. O'Reilly, Observers for Linear Systems, Academic Press, New York, 1983
  3. S.-Y. Zhang, 'Function observer and state feedback,' Int. J. Control, vol. 46, no. 4, pp. 1295-1305, 1987 https://doi.org/10.1080/00207178708933969
  4. B. R. Barmish and A. R. Galimidi, 'Robustness of Luenberger observers: Linear systems stabilized via nonlinear control,' Automatica, vol. 22, no. 4, pp. 413-423, 1986 https://doi.org/10.1016/0005-1098(86)90046-4
  5. X. Ding, P. M. Frank, and L. Guo, 'Robust observer design via factorization,' Proc. of the 29th Conf. Decision Control, pp. 3623-3628, 1990
  6. L. Xie and Y. C. Soh, 'Robust Kalman filtering for uncertain systems,' Systems and Control Letters, vol. 22, no. 2, pp. 123-129, 1994 https://doi.org/10.1016/0167-6911(94)90106-6
  7. H. Gao and C. Wang, 'Delay-dependent robust $H_{\infty}$ and L2-$L_{\infty}$ filtering for a class of uncertain nonlinear time-delay systems,' IEEE Trans. on Automatic Control, vol. 48, no. 9, pp. 1661-1666, 2003 https://doi.org/10.1109/TAC.2003.817012
  8. H. Gao and C. Wang, 'A delay-dependent approach to robust $H_{\infty}$ filtering for uncertain discrete-time state-delayed systems,' IEEE Trans. on Signal Processing, vol. 52, no. 6, pp. 1631-1640, 2004 https://doi.org/10.1109/TSP.2004.827188
  9. H. S. Gorecki, P. Fuska, S. Grabowski, and A. Korytowski, Analysis and Synthesis of Time Delay Systems, Wiley, New York, 1989
  10. V. B. Kolmanovskii and A. D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999
  11. S. Xu, P. Van Dooren, R. Stefan, and J. Lam, 'Robust stability and stabilization for singular systems with state delay and parameter uncertainty,' IEEE Trans. on Automatic Control, vol. 47, no. 7, pp. 1122-1128, 2002 https://doi.org/10.1109/TAC.2002.800651
  12. Y. X. Yao, Y. M. Zhang, and R. Kovacevic, 'Functional observer and state feedback for input time-delay systems,' Int. J. Control, vol. 66, no. 4, pp. 603-617, 1997 https://doi.org/10.1080/002071797224612
  13. H. Trinh and M. Aldeen, 'A memoryless state observer for discrete time-delay systems,' IEEE Trans. on Automatic Control, vol. 42, no. 11, pp. 1572-1577, 1997 https://doi.org/10.1109/9.649721
  14. A. Isidori, Nonlinear Control Systems, Springer-Verlag, New York, 1989
  15. A. J. Krener and W. Respondek, 'Nonlinear observers with linearizable error dynamics,' SIAM J. Control Optim., vol. 23, no. 2, pp. 179- 216, 1985
  16. R. Rajamani, 'Observers for Lipschitz nonlinear systems,' IEEE Trans. on Automatic Control, vol. 43, no. 3, pp. 397-401, 1998 https://doi.org/10.1109/9.661604
  17. L. Xie, C. E. de Souza, and Y. Wang, 'Robust filtering for a class of discrete-time uncertain nonlinear systems: An $H_{\infty}$ approach,' Int. J. Robust & Nonlinear Control, vol. 6, no. 4, pp. 297-312, 1996 https://doi.org/10.1002/(SICI)1099-1239(199605)6:4<297::AID-RNC234>3.0.CO;2-V
  18. E. Yaz and W. Na Nacara, 'Nonlinear estimation by covariance assignment,' Preprints of the 12th IFAC World Congress, vol. 6, pp. 87- 90, 1993
  19. Z. Wang and H. Unbehauen, 'Nonlinear observers for a class of continuous-time uncertain state delayed systems,' Int. J. Systems Sci., vol. 31, no. 5, pp. 555-562, 2000 https://doi.org/10.1080/002077200290876
  20. Y. Wang, L. Xie, and C. E. de Souza, 'Robust control of a class of uncertain nonlinear systems,' Systems and Control Letters, vol. 19, no. 2, pp. 139-149, 1992 https://doi.org/10.1016/0167-6911(92)90097-C
  21. Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems,' Int. J. Control, vol. 74, no. 14, pp. 1447-1455, 2001 https://doi.org/10.1080/00207170110067116
  22. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pennsylvania, 1994
  23. A. Z. Manitius, 'Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation,' IEEE Trans. on Automatic Control, vol. 29, no. 12, pp. 1058-1068, 1984 https://doi.org/10.1109/TAC.1984.1103436