DOI QR코드

DOI QR Code

주입 전하량의 실시간 제어에 의한 PPLN 제작 및 분극반전 과정 분석

Fabrication of PPLN by Real-Time Control of a Transferred Charge and Analysis of Domain Inversion Process

  • 권재영 (경북대학교 전자전기컴퓨터학부) ;
  • 김현덕 (경북대학교 전자전기컴퓨터학부) ;
  • 송재원 (경북대학교 전자전기컴퓨터학부)
  • Kwon, Jai-Young (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Hyun-Deok (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Song, Jae-Won (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 발행 : 2006.03.01

초록

효율적인 PPLN 제작을 위하여 DC 전계를 인가하면서 $LiNbO_3$에 인가되는 전압 및 전류를 실시간으로 측정할 수 있는 실험 장치를 제안하였다. 제안된 실험 장치를 사용함으로써 PPLN의 분극반전에 필요한 충분한 전하량을 공급하기 위한 전계인가시간을 수초 단위로 증가시킬 수 있어 $LiNbO_3$에 주입되는 전하량의 조절을 용이하게 할 수 있었다. 또한 PPLN의 분극반전 과정을 단계별로 분류하고 각 단계별 실험결과를 바탕으로 분석함으로써 최적의 PPLN 제작조건을 구할 수 있었다.

We proposed a PPLN fabrication setup that measures the voltage and current applied to $LiNbO_3$ in real time during application of a DC electric field. Because the duration for transferring a sufficient electron charge to $LiNbO_3$ increases, we are able to control the electron charge flow transferred to $LiNbO_3$ efficiently. We divided the domain inversion process of PPLN into 5 states: Nucleation (state 1), Spread of the domain inversion region under the electrode(state 2), Accumulation of the electron charge at the insulator/$LiNbO_3$ interface(state 3), Domain inversion under the insulator layer after breakdown(state 4), and Lowering the electric field applied to $LiNbO_3$ (state 5). We have found that the Threshold Point is essential for the domain inversion and that the domain inversion process must be stopped within state 3 for the optimum PPLN. Using these results, we could fabricate a stable and reproducible PPLN efficiently.

키워드

참고문헌

  1. Chang-Qing Xu, 'QPM $LiNbO_3$ wavelength converters for optical communication applications,' in CLEO/Pacific Rim 2001, Chiba, Japan, vol. 1, pp. I-444-I-445, 2001
  2. A. D. Rossi, V. Berger, G. Leo, and G. Assanto, 'Form birefringence phase matching in multilayer semiconductor waveguides: tuning and tolerances,' IEEE J. Quantum Electron., vol. 41, pp. 1293-1302, 2005 https://doi.org/10.1109/JQE.2005.854133
  3. C. Flueraru, and C. P. Grover, 'Overlap integral analysis for second-harmonic generation within inverted waveguide using mode dispersion phase match,' IEEE Photon. Technol. Lett., vol. 697-699, 2003
  4. Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, 'Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,' IEEE J. Quantum Electron., vol. 28, pp. 2631-2654, 1992 https://doi.org/10.1109/3.161322
  5. Lawrence E. Myers, and Walter R. Bosenberg, 'Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators,' IEEE J. Quantum Electron., vol. 33, pp. 1663-1672, 1997 https://doi.org/10.1109/3.631262
  6. E. J. Lim, M. M. Fejer, and R. L. Byer, 'Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,' Electron. Lett., vol. 25, pp. 174-175, 1989 https://doi.org/10.1049/el:19890127
  7. S. Makio, F. Nitanda, K. Ito, and M. Sato, 'Fabrication of periodically inverted domain structures in $LiTaO_3$ and $LiNbO_3$ using proton exchange,' Appl. Phys. Lett., vol. 61, pp. 3077-3079, 1992 https://doi.org/10.1063/1.107990
  8. M. Fujimura, T. Suhara, and H. Nishihara, '$LiNbO_3$ waveguide SHG device with ferroelectric-domain-inverted grating formed by electron-beam scanning,' Elecron. Lett., vol. 28, pp. 721-722, 1992 https://doi.org/10.1049/el:19920457
  9. K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, 'High-efficiency $LiNbO_3$ waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage' J. Lightwave Technol., vol. 14, pp. 462-468, 1996 https://doi.org/10.1109/50.485608
  10. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, 'First-order quasi-phase matched $LiNbO_3$ waveguide periodically poled by applying and external field for efficient blue second-harmonic generation,' Appl. Phys. Lett., vol. 62, pp. 435-436, 1993 https://doi.org/10.1063/1.108925
  11. P. W. Haycock and P. D. Townsend, 'A method of poling $LiNbO_3$ and $LiTaO_3$ below Tc,' Appl. Phys. Lett., vol. 48, pp. 698-700, 1986 https://doi.org/10.1063/1.96747
  12. L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, 'Quasi-phase-matched optical parametric oscillators in bulk periodically poled $LiNbO_3$,' J. Opt. Soc. Am. B, vol. 12, pp. 2102-2116, 1995 https://doi.org/10.1364/JOSAB.12.002102
  13. V. Y. Shur and E. L. Rumyantsev, 'Domain kinetics in the formation of a periodic domain structure in lithium niobate,' Phys. Solid State, vol. 41, pp. 1681-1687, 1999 https://doi.org/10.1134/1.1131068