JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006(pp. 720-727)

Integrated Methods of Various Media Generators in
The SuperSQL Query Process System

Sang-Gyu Shin*, Tai-Suk Kim”, Motomichi Toyama' "

ABSTRACT

In this paper, we propose a method which allows the SuperSQL query processor to share as much
code as possible among various_generators, each of which is responsible for the output of a certain medium.
SuperSQL is an enhanced query-processing system that converts database records into a variety of
formats such as XML, HTML, PDF and etc. However, the existing SuperSQL media generator would
require creation of a different processor for each medium, causing duplicated development cost. This
research makes three main contributions: First, it analyzes the structures of various media, examining
any possibility of integration based on their common structure. Second, it also facilitates the addition
of a new output media generator by separating constructors and decorators from each medium. Last,
it provides an integrated user interface to each media by method of the Media Abstraction Table Concept.
We also show the performance and feasibility of our system using experimental results.

Keywords: Database, Database Publish, Multimedia Publish, Integration

1. INTRODUCTION

As the amount of information available to us is
literally increasing before our eyes, the value of da-
ta as an organizational asset is widely recognized.
To get most available information, users require
tools that simplify the tasks of _managing data such
as relational databases. A database system is a
central repository. of .information, which is shared
among a number of applications. It is shared not
only by multiple applications but also by multiple
types of business applications. For example, the
same data is used to produce printed reports,

% Corresponding Author: Tai-Suk Kim, Address:
(614-714) 995 Eomgwangno, Busanjin~gu, Busan, Korea,
TEL : +82-51-890-1707, FAX : +82-51-890-1724, E-mail
: tskim@deu.ac kr
Receipt date : Feb. 28, 2006, Approval date : June 7, 2006
* Dept. of Information and Computer Science, Keio Univ.
Japan
(E-mail : shin@db.ics.kelo.ac.jp)
* Dept. of Computer Software Engineering, Dongeui
Univ.
Dept. of Information and Computer Science, Keio
Univ. Japan
(E-mail : toyama@db.ics.keio.ac.ip)

+

hiad

spreadsheets, web pages or XML documents to
exchange data 6ver the Internet.

A conventional query language for a relational
database system yields another relation and results
in a flat table form. So called 4GL systems such
as “report writers” have been used to translate the
information obtained from a DBMS to a specific
application. Unfortunately, there is no standard
language that covers the specification of such
translations into various types of application data.
. SuperSQLI[1-4] is an extension of SQL that al-
lows query results to be presented in various media
for publishing and presentations with simple but
sophisticated formatting capabilities. SuperSQL
queries can generate various kinds of materials, for
example, a LaTeX source document to publish
query results in a nested table, HTML or XML
source documents to present the result on WWW
browsers, and other media including MS-Excel
spreadsheet, PDF, etc.

" In this paper, we restructure the parts of the me-
dia generator in the SuperSQL query processor in
order to efficiently support target publishing media.

Integrated Methods of Various Media Generators in The SuperSQL Query Process System 721

An old problem of the SuperSQL system is that
it increases of media generation by adding target
media to publishing. This means that individual
target média have their own media processing
parts to publish media. These processing methods
are very inefficient in the SuperSQL media gen-
erating processor.

The new system we propose in this paper is
based on a trinity data model that is composed of
data, structure, and media abstraction. Using these
concepts, we extract common processing parts
from each media generator, and make those char-
acteristics common to all. We then present meth-
ods for integrating media generators into a com-
mon programming interface using the trinity data
model. Finally, we present an experimental study
of the new system using a workload of publishing
for each target media document.

The rest of the paper is organized as follows.
In section 2 we provide a brief overview of
SuperSQL and in Section 3 describe our new sys-—
tem architecture and proposed methods to integrate
media generators and how to use it for publishing
media documents. Section 4 discusses related work
and compares our system with related research.
Section 5 reports some experimental results and

Section 6 -concludes the paper.

2. AN OVERVIEW OF SUPERSQL

SuperSQL extends SQL with TFE to generate
various kinds of structured publishing and pre-
sentation documents. Fig. 1 shows the system ar-
chitecture of SuperSQL.

TFE is an extension of a target list in SQL.
Unlike an ordinary target list, which is a com-
ma-separated list of attributes, TFE uses new op-
erators (connectors and repeaters) to specify the
structure of the document generated as a result of
the query. Each operator is associated with a di-
mension respectively: horizontal (first dimension),
vertical (second dimension), and depth (third di-

SuperSQL Query

(N
~ SQL
Layout . y
Expression Hierarchical
List Structure
DBMS
Interface
Code Generators \(

[HTML][LaTeX][XML J

Fig. 1. Architecture.

mension). Several kinds of special functions are al-
so supported.

We adopted the GENERATE clause with TFE
in place of the SELECT clause. The GENERATE
clause if made to target media definitions and TFE
definitions by extended SELECT clause. In addi-
tion to this, the media into which the query results
convert to has to be specified as below.

GENERATE <med/um><TFE>
FROM <form c/ause’>
WHERE <where c/ause>

As a <medium> specification, we introduced
HTML to specify the generation of an HTML

source file in this paper.

3. TRANSLATION SYSTEM

The problem with the previous version of the
SuperSQL query processor is that a new code gen—
erator is needed for each target medium when a
new target media is added. In order to improve the
redundant structure of media generator processors,
we have redesigned the system architecture based
on the trinity data model (Fig. 2) concept. Every
published medium has its own constructors (tag
set, Medium Abstraction on Fig.2), data stream
(Value on Fig. 2), and nested structure (Structure
on Fig. 2), while relational tables do not. Thus, in
converting from tables in a relational database to

722 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

Value
(SQL)

Structure Medium
(TFE) Abstraction

Fig. 2. The Trinity Data Model.

target media documents, constructed information
(constructors and structure) has to be added some-
where along the way. Our approach is to add con-

structors and to make separate structure process—:

ing separated by each object method.

The goal of the Trinity Data Model concept
(TDM) is to reconstruct independently from a spe-
cific target medium. The translation system is
maintained as just one base structure for generat-
ing a target medium. Some specific target media
use this integrated base structure by assigning the
tag definition methods in the processor for con-
structing specific media. To achieve this goal, we
restructure the translation system as an ob-
ject-oriented system. The advantage of this con-
cept is that the SuperSQL becomes more extensible.
We also want to provide a more efficient and com-—
mon interface for programmers who want to de-
velop a new media document using the SuperSQL
system.

3.1 The Architecture of Proposal System

Our system consists of three parts: DBMS
Interface, constructors Generator and Media
Generator based on the Trinity Data Model. Fig.
3 shows the architecture of our system.

DBMS Interface: Value part of the TDM. A
common SQL sentence that is extracted from
SueperSQL through the parser, retrieves and ob-
tains the result from existing database systems.

Constructors Generator: Media abstraction
part of the TDM. This part makes basic in-
formation to generate target media. It is composed
of a TFE Processor, Constructor Processor,
Function Processor and Decorator Processor.

SuperSQL Query
i
| SuperSQL Parser ,
Layout expression Decorators sqL
Constrygtors Generator] Information
TFE Decorator | | DBMS QL
Processor Processor | | Interface DB
... Fat
1 Structure . Flat Data Table ‘.
IConstructor|information
Processor |ir——- i ispedfic £
H i : : . Tree Structured
Function gsM:c.,;iac Decorators: Grouping | | et
Information H P : :PI'DCGSSOI':
:Processor : :
Function

Fig. 3. The Proposal System.

Media Generator: This is composed of a Media
Specific Processor, Grouping Processor, etc. The
basic information to generate target media made
by a constructors generator and is used in this part.
A Media Specific Processor executes the specific

processing as does an HTML link option.

3.2 Making Meta-data as XML

The SuperSQL query is separated into a com-—
mon SQL query and a TFE expression by the
parser. The common SQL query is passed to
DBMS and a flat query output is obtained. It is
converted into a hierarchical list structure by a list
constructor in accordance with the nesting struc-
ture of the layout expression. However, this hier-
archical list is just a grouped list that does not have
any information about TFE or any decorative op-
erator information for a specific target medium.

The grouping process is the most important fea-
ture of SuperSQL. As we see below, a SuperSQL

query makes a table such as can be seen in Fig. 4.

Generate HTML [P.age, [P.name, [c.model, [C.color]!
M.maker}!]!]!

From people P, car C carmaker M

Where P.cid = Cid and C.mid = M.id

Integrated Methods of Various Media Generators in The SuperSQL Query Process System 723

30 Shin A8 Black Audi
30 Shin AB Blue Audi

30" | Shin | Spider | Orange | Ferrari

30 Shin A8 Black Audi

% Blue

Spider | Orange | Ferrari

Fig. 4 Grouping in SuperSQL.

To make a grouped table as in Fig. 4, we first
need to know how to group, then into which me-
dium to convert the original table grouping in-
formation and other information for the target
media. One simple way to do this is to add TFE
information to the intermediate result from the re-
lational database. In our approach, this would be
done by making the XML[10] document as shown
in Table 1. Note that the XML type has TFE in-
formation (G1, C1, etc) to in order to show group—
ing information.

GENERATE HTML [A% [B, C, D]! 1,
FROM items
Layout Expr. (G1 (€31 (G2 (C1 23 4)))

Query :

Our translation system groups the flat result ta-
ble of a relational database based on grouping in-
formation in a layout expression. The number of
Layout Expr. represent column numbers of results
from the relational database. Commas (), ex-
clamation points (!), percents (%), and brackets ([
1) are expressions in TFE for connecting and re-
peating the flat result table. Layout expression is

Table 1. Transforming Query Output.

((A1 ((Bl11 Cil1 DID
(B12 C12 D12)))
(A2 ((B2l C21 D21)
(B22 C22 D22)
(B23 C23 D23))))

Hierarchical
List

<G1><C1><COL1>al</COL1><G2>
XML Type |<C1><<COL2>B11</COL2><COL3>
B11</COL3>

created by the SuperSQL query parser. Our system
translates the result of DBMS to an XML type file
as shown in Table 1. Fig. 5 shows the XML type
schema. This XML schema is used to add con-

structors and decorators for creating target media.

s o W AL OB AHL il Wt) Do

< PR VRrSION=T1.07 2>
- e GL>
TYPE="MEDIA"> HTML </HEDIA>

CTER TYPE="Horkzontal_Connecter”s

COLUMN® coicr="blue™> p.age<cs/LOLUMN
“Vertical_Repeater'>

= “Horizontal_Connecter:-

M4 TYPE= "COLUMN "» p.name < /COL
L TYPE="Vertical_Repeater” siza=
NECTER TYPE="Horlzontal_Connect:
CLUMN TYPE="COLUMN "> ¢.model</COLUMK>
ROUPER TYPE="Vartical_Repeater’>

TTER TYPE="Verthkcal_Connecter™>

Kt TYPE="COLUMN"> ccolor</COLUMED>
NECTER TYPE="Horlzontal_Connecter'>

N TYPEx COLUME > c.model /COLL MM >
AH TYPE="COLUMN™ cotor="color’
12345 c.name</COLUKME>

N TY2E= "COLUMN > c.color</COLUMN

Fig. 5. View of Created XML.

3.3 Process for Construction

In order to publish RDB query results to a target
medium, we must start with the intermediate data,
which is a XML document. To achieve this, we get
the processor to check the TFE types and to handle
these TFEs. Fig. 6 shows the process for a TFE
type check.

Process Matching TFE Expression Type

Input: meta-data base on XML doc. list L

01: Let Gs be the element of L

02: For L is not ended do:

03 Let Ts be the string parsed Gs for check TFE type;
04: If Ts equals.G1 type then;

05: Invoke (I method with the result and L
06: If Ts equals G2 type then;

07: Invoke G2 method with the result and L
08: If Ts equals 3 type then;

09: Invoke G3 method with the result and L
10: If Ts equals CI type then; :
11: Invoke CI method with the result and L
12: If Ts equals (2 type then;

13: Invoke C2 method with the result and L
14: If Ts equals C3 type then;

15: Invoke C3 method with the result and L
16: Else: // Ts is unknown type

17 Print the error message;

Fig. 6. Matching Process for TFE Expression type.

724 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

This processor checks the TFE type, invoking
the most appropriate method for the result and
some information for processing the constructor.
The expressions G1, G2 and G3 are known as three
dimensional repeaters meaning horizontal, vertical
and depth, respectively and C1, C2 and C3 are the
three dimensional connectors. Each TFE method
which has received data makes an applicable
structure by referencing the specific tags of an ap-
plicable medium.

In order to work independently from a specific
medium, the data type constructors (specific tags)
are defined in a medium generator independent
from structure processing. For example, Fig. 7
shows the constructors required to publish LaTeX
and HTML documents.

As shown in Fig. 7, we basically need to define
a preamble, separator and trailer in order for the
medium document to be structured properly. To
separate these specific constructors from structure
processing, we design the structure processing
parts to they can add (control) these tags sepa-
rately from the program source. Fig. 8 shows the
basic processing with regard to the structure proc-
essing part for TFE.

LaTeX
Dim [~ Preamblé = v ' Separator Trailer
0 “\;:;;i‘(‘fl‘(‘)‘c’m;{‘f;““‘“ \end({document}
1 ‘hegin{tabular} {ce} & ‘\end{abular}
2 | sbepin{tbular}{c} W ‘end { abular
3 . Wiilleject
HTML
Dim Preamble Separator Trailer
o <htmi><body> <fbody><thtml>
i <table><tr><id> <ftd><d> <hid><fr><fable>
2 <table><tir><td> | <dp<r<rs<id> | <itd><Ar></table>
3 <fu>

Fig. 7. Sample Medium Abstraction Matrices.

Process Basic Algorithm for TFE Processing System
Input. Database result by list L

01: Let Gs be the element of L start point at L is Sp
02: Let Ws & We be the starting wrap this function;
03: Let C be the string mean connector;

04: Let F be the functions type of SperSQL;

05: Function tfeGl(start tag Ts)

06: Let Te be the end tag made from Ts, result list R
07: For L is not ended do:

08: If Gs equal Te them:

09: Add We and C at R

10: Escape process and throw R to recurred function
11: Else:

12: If this process works at first then:

13: Add Ws at R

14: Else: Add Ws and C at R

15: If Ts equals G types then:

16: R <add result from process Gtype methods(T's)
17: If Ts equals Ctypes then:

18: R <add result from process Ctype methods(75) ;
19: If Ts equals F types then:

20: R <add result from process functionmethods(Ts) ;
21: Else: // Ts is unknown type

22: Throw R to Error process;

23: return R

Fig. 8. Basic Concept Algorism of TFE Methods.

This process checks the structure type and re~
sult list R. After the check, the processor throws
the TFE type and adapted point to the each struc-
ture processor.

3.4 Automata Theory for Construct

For a detailed description of proposal processes,
we refer to the automata and computation theo—
ry[11]. Before we describe the automata theory, Let
us first discuss methods used in our theory. We
define the grammar and deterministic finite
automata. Context—free grammar & can be defined
as a 4-tuple:

G = (V,Vi,P,S)

= V: is a finite set of terminals

» V. is a finite set of non-terminals

» P is a finite set of production rules

» S is an element of V,, the distinguished start-

ing non-terminal

Integrated Methods of Various Media Generators in The SuperSQL Query Process System 725

The definition of non-deterministic finite au-
tomaton (NFA) is: let @ be a finite set and let &
be a finite set of symbols. Also let J be a function
from @x2X to 20, Go be a state in @ and A be a
subset of @. We call the elements of @ a state, J
the transition function, go the initial state and A
the set of accepting states. Then a non-determin-
istic finite automaton becomes a 5-tuple <@, &, go,
d, A>. The basic process of TFE (Fig. 8) and the
basic process of the tag set (Fig.' 10) can be defined
theoretically as laid out below. It is based on Fig.
7, Sample Medium Abstraction Matrices. The pre~
amble is defined as Co and Separator as Cs, Trailer
is defined to be Cc, and then basic pattern can be
defined as a regular expression Rz = ((Co)” ((Co)
((R5)" 1 D") (Co” (Cs)")" . This grammar G
is defined as

Gs = ({E, Co, C¢, Cs, D}, {Str., Obj., A}, P, E)

P ={E—>Co D Cc Cs, D=E | Str. | Obj. | A,
Co —Str. | Obj. | A, Cc —=Str. | Obj. | A,
Cs =Str. | Obj. | A}

Str. is a result stream that is processed through
a translation process. Before describing further de-
fine elements. Open tag represents 7o and name
space represents Ns, Tag name is Tw, Attributes
represent A, Close tag is Tc¢ The regular ex-—
pression F¢ is defined as

Rs = ((To)(Ns)' (TW(A) (Tc))~
The grammar of Rp is defined as below

Ge = UC To, Ns, Tn , A, Tc }, {Str., Obj,
A}, P, E)

P= {C—>To Ns Tvn A T, A—C | A. | A,

To —Str. | Obj., Tn —Str. | Obj. | A,

Tc Str. | Obj. | A, Ns -Str. | Obj. | A}

We can define the NFA Mg and M¢ based on
Ge and Ge.

Mg = (Qs, {C, D}, 3, gm, Co)
@B = (Gini, Co, Cc¢, Cs, Data)
Mc = (Qc, {T, A}, 9, qini, TO)
Qc = (g, To, Ty, Tc, Ns, Att.)

Our translation processor uses this parsed in-

formation before constructing target media.

4. RELATED WORKS AND EVALUATION

Research projects such as SilkRoute[5] and
XPERANTO(6] have proposed techniques for effi-
ciently publishing relational data as XML.
Commercial database products such as SQL
Server, Oracle, and DB2 also provide support for
publishing relational data as XML[9]. However,
they are limited only to a specific document me-
dium format.

Bickmore[7] has proposed web page filtering
technology and re-authoring for mobile users us-
ing Web-page data. Other research for efficient
web browsing on handheld devices using page and
studied by
Buyukkokten[8]. Chen[12] proposed detecting web
page structure technology. However, these fe—

form summarization is being

searches are limited to web page data.

Another area of database publishing is applica-
tions that use databases to manage large amounts
of information. To publish these data, they need
to assign an operator to design the layout form.

Our work differs from the above research in the
following respects. First, we support publishing to
various media based on the SuperSQL. SuperSQL
has features like arbitrarily nested expressions and
ordered grouping, which were not supported in
previous research. Second, we use Target Form
Expression (TFE) which extends SQL expression.
TFE expression can generate multi-level, mul-
ti-page documents immediately to keep the latter
up to date. Qur work proposes more efficient in—
tegration methods and offers convenience to pro-
grammers based on the SuperSQL system.

726 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

5. EXPERIMENTAL RESULT

In this section we report-the-performance of the
proposed integration methods. We compare the
processing time among varying table. The per-
formance of our system is compared among exam-
ple tables with tuple numbers varying from 10000

to 40000. Our proposed method improved execution

time by 45% compared with existing systems
without an integrated processor. Table 2. shows
the amount of source code compared with the ex-
isting systems. Every medium generator has at
least a 90% decrease in the amount of source code.
The experimental result shows the efficiency of
our integrated method compared to existing
systems. Fig. 9 shows the published XML and
HTML results.

Table 2. Number of Each Generator.

compare system| proposal system
parser 3500 4000
XML 2400 190
HTML 1800 170
LaTeX 1800 170

<AGE>30</AGE>
- <G>

<NAME>SRin</NAME> [levscomnmmmpmb
- <G>
“nove>ag<mooees | DOWL Result
- G AGE 1 1 MOLEL COLGR BRES
<COLCR> Black</COL

<COLOR> Blee<fCOLC
<fG2>
<INFO»Andi«< /INFO> 30
<HODEL»Spider</(00
- &G2>
<CHOR>Qrange</Cc
<COLCR> Red < fCOLO

Fig. 9. Media Publication Example.

6. CONCLUSION

In this paper, we have focused on the problem
of the media generator in SuperSQL query
processor. One of the most important issues in da-

tabase research is how to use the result of
databases. The research which will transform da-
tabase results into media is progressing in various
fields. Our research is one such fields. In this re-
search, we proposed a system that integrated a
media generator process in SuperSQL which uses
SQL language extension to specify the con-
struction of a hierarchical list from relational data.
By integrating a media generator and supplying a
common user interface in this manner, our applica-
tion could reuse existing functions and APIs in or-
der for users to structure a target medium from
relational data sources. The bulk of this research
was devoted to exploring efficient mechanisms for
making grouped tree-structure meta-data in the
form of XML documents. Moving toward this goal,
we first present, the SuperSQL system and illus—
trate its problem, focusing on the media generator.
In addition to this, we design our reformation sys-
tem based on common parts and find out main dif-
ferences between some media namely: con-
structors, attributes and nested structure. Our ex-
perimental results showed that use of the provided
method and integration of media generators can
provide a significant performance benefit and eas-
ier generating environment. This is because the
user or programmer does not need to know the
structure or processing function thanks to uti-

lization of common method.

7. REFERENCES

[1]} M. Toyama, “SupserSQL:An Extended SQL
for Database Publishing and Presentation,”
Proceedings of the ACM SIGMOD Interna-
tional Conference on management of Data, pp.
584~586, 1998.

[21 M. Akahori, T. Arisawa, and M. Toyama,
“Data Integration on Relational Database and
XML Using SueprSQL,” IPS] Transactions
on Databases, Vol. 42, No. SIG8, pp. 66-95,
2001.

integrated Methods of Various Media Generators in The SuperSQL Query Process System 727

[3] M. Sasada and M. Toyama, “Generating
Dynamic Presentation for Database Contents
Using Sequencing Operators of SuperSQL,”
IPSJ Transations on Databases, Vol. 46, No.
SIG13, pp. 65-77, 2005.

[4] S. G, Shin, T. Arisawa, and M. Toyama, “The
Integration of Media Generators in SuperSQL
Query Processor,” Proceedings of the Third
International Conference on ELPIIT, pp. 72—
76, 2003.

[5] M. F. Fernandez, Y. Kadiyaska, D. Suciu, A.
Morishima, and W. C. Tan, “SilkRoute: A
framework for publishing relational data in
XML,” ACM Transactions on Database
Systemns, Vol. 27, No. 4, pp. 438-493, 2002.

[61 M. J. Carey, J. Kiernan, J. Shanmugasundaram,
E. J. Shekita, and S. N. Subramanian,
“XPERANTO : A Middleware for Publishing
Object-Relational Data as XML Documents,”
Proceedings of the International Conference
on Vary Large Database, pp. 646-648, 2000.

[7]1 T. W. Bickmore, A. Girgensohn, and J. W.
Sullivan, “Web Page Filtering and Re-
Authoring for Mobile Users,” The Computer
Journal, Vol. 42, No. 6, pp. 534-546, 1999,

[8] O. Buyukkokten, O. Kaljuvee, H. Garcia-
Molina, A Paepcke, and T Winograd,
“Efficient web browsing on handheld devices

using page and form summarization,” ACM

Transaction on Information Systems, Vol. 20,
No. 1, pp. 82-115, 2002.

[9] C. Gould, Z. Su, and P. T. Devanbu, “Static
Checking of Dynamically Generated Queries
in Database Applications,” Proceedings of the
International Conference on Software Engi-
neering, pp. 645-654, 2004.

[10] M. Nicola and]. John, “XML parsing : a
threat to database performance,” Proceedings
of the International Conference on Informat-
ion and Knowledge Management, pp. 175~
178, 2003.

[11] J. E. Hopcroft, R. Motwani, and J. D. Ullman,
Introduction to Automata Theory, Languages,
and Computation, Addison Wesley Publishers,
Boston, MA., 2000.

[12] Y. Chen, W.-Y. Ma, H-]. and Zhang, “Detecting
Web page Structure for Adaptive Viewing on
Small Form Factor Devies,” Proceedings of
the International WWW Conference, pp.
225-233, 2003.

Sang-Gyu Shin

received the BE degree in com-
puter engineering form Dongeui
University, Korea, in 2000 and
the MS degree in OPEN and en-
vironmental system from Keio
University, Japan, in 2003. He is
currently a PhD candidate in the

same University. His research interests include data-

base systems, XML, data mining. He i1s a student
member of the ACM and IEEE.

Tai-Suk Kim

received the B.S. degree in
Electronic Engineering form
Kyungpook National University,
Korea, in 1981 and the M.S. and
ph.D. degree in Computer
Science from KEIO University,
Japan, in 1989 and 1993,
respectively. Since 1994, he has been a faculty member
of the Dongeui University, where he is now Professor
in department of Computer software engineering. His
research field has been in information system, internet
business, network game and NLP.

Toyama Motomichi

received the PhD degree in ad-
ministration engineering from

Keio University in 1992. He is a
assistant professor in the
Graduate School of Information
and Computer Science at Keio
University. His research inter—
ests include database systems and database publishing.
He i1s a member of IEEE Computer Society and ACM.

