JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 8, JUNE 2006(pp. 700-708)

Storing and Retrieval of Multiversion XML Documents

in Relational Databases

Min Jin"

ABSTRACT

In this paper, we propose a method of managing versions of XML documents by using relational
databases. Data structures based on relational tables are developed for accommodating versions of XML
documents. The structure information, the contents, and changes of the versions are stored in relational
tables. Thus, SQL can be exploited in queries such as horizontal queries, vertical queries, and delta queries
without parsing the documents. The structure information and contents of all versions are not represented
explicitly in the tables, those of certain versions which are called snapshot versions are represented. Other
versions are represented indirectly as sequences of operations that are stored in the corresponding tables.

The experiment shows the space performance.

Keywords: XML, Version, RDBMS, Snapshot version, Delta

1. INTRODUCTION

XML is becoming a de facto standard for repre-
senting data in Internet data processing environ-
ments. The volume of XML documents used in
Internet data processing environments is getting
larger and these documents are evolving con-
tinuously. This fact gives rise to the issue of ver-
sion control of XML documents. XML data can be
stored in file systems, object-oriented database
systems, special purpose XML storage systems, or
relational database systems. Relational databases
are widely used in conventional data processing
and provide inherent well developed services such
as transaction management and query optimization
that might be exploited in managing XML data.
Hence, lots of research have been done in using
relational databases for storing XML docu-

% Corresponding Author : Min Jin, Address: (631-701)
449 Wolyoung-dong, Masan, Kyungnam, S. Korea, TEL
1 +82-55-249-9653, FAX : +82-55-248-2554, E-mail:
mjin@kyungnam.ac.kr

Receipt date: Feb. 22, 2006, Approval date : June 29, 2006
* Div. of Computer Engineering, Kyungnam University
% This work was supported by Kyungnam University
research fund.

ments[7,8,11-16,20]. It gives rise to research in
managing versions of XML documents stored in
relational databases.

There have been research on managing versions
of XML documents[2,4,6,18,19]. There are a few is-
sues to be addressed in managing versions of XML
documents. The first issue is the representation of
each version in the evolution environment. The
history of changes to an element should be also
traceable. The second issue is the efficiency of
storage. When all versions of XML documents are
stored separately, surmountable data can be
duplicated. Thus it leads to the waste of storage.
In general, there is a trade-off between storage
space and access time in managing versions. The
third issue is the processing of queries against ver—
sions of XML documents.

In this paper, we propose a method for managing
versions of XML documents by using RDBMS.
There is a fundamental issue to be addressed in
managing XML documents via RDBMS due to the
discrepancy between hierarchical structure of XML
and flat structure of relational databases [12,13].
Special data structures based on relational tables
are developed for accommodating versions of XML

Storing and Retrieval of Multiversion XML Documents in Relational Databases 701

documents. We propose a novel method for repre-
senting versions of XML documents, in which
k-distance versions are explicitly represented,
other versions are represented as sequences of op—
erations stored in the corresponding tables. The
k-distance could be determined by the rate of ac-
cumulated changes or fixed number. Other ver-
sions can be constructed by applying the sequence
of operations on the appropriate snapshot version.
This method is a compromise solution to version
control between explicit and implicit method. All
versions are explicitly represented in the explicit
method, whereas most of versions are not repre-
sented explicitly in the implicit method like in
RCS[17] and SCCSI[9]. There are two ways for
representing versions in the explicit method. All
versions are represented in a single space like the
method in [1]. In the other way, each version is
represented separately. The former method uses
less storage space than the second. However, cost
of version construction in the first method is higher
than that in the second method.

The rest of this paper is organized as follows.
Section 2 reviews the related work. Section 3
shows the data structures for representing ver-
sions of XML documents in relational tables.
Section 4 describes our scheme for managing ver—
sions of XML documents in relational databases
and discusses the performance. Section 5 offers
conclusions.

2. RELATED WORK

Traditional version control schemes such as
RCS[17] and SCCS[9] have been developed for
managing versions of texts. In RCS, the most cur-
rent version is represented intact while the pre-
vious versions are stored as reverse editing scripts.
In SCCS, a pair of timestamps is associated with
each segment of the text and represents the life~
span of the segment. Although these line-based

schemes provide basic intuitions for managing

versions of XML documents, they are not appro-
priate for managing versions of XML documents
with hierarchical structures. There are no logical
structures represented in both RCS and SCCS, so
that it is difficult and expensive to reconstruct the
logical structure of a version of XML documents.
Hence, schemes for storing and retrieving logical
structures of versions of XML documents have
been developed(3,4,5,19). RBVMIS] unifies the log-
ical and physical representations. The versions of
XML documents are represented as other XML
documents, the DTD of RBVM scheme can be
easily derived from the original DTD of documents.
Elements for representing reference records are in—
cluded and an ID attribute is added to each element.
The objects unchanged in the new version are rep-
resented as references to the objects in the old
version. This scheme can handle simple queries
rather than complex queries for which different
storage representations are needed. A scheme for
supporting complex queries and temporal queries
have been developed, in which successive versions
of an XML document are represented as an XML
document called V-Document{19]. In this scheme,
two attributes vstart and vend which represent the
intervals of valid versions are assigned to each
element. The version interval of an ancestor ele-
ment always contains those of its descendant
elements. A technique in which an element appear-
ing in multiple versions is stored once has been
developed[1]. The logical structure of each version
1s preserved by using keys and timestamps. A new
version is merged with the existing archive and
a certain version is extracted from the archive.
Copy-based UBCC scheme with page usefulness
management[3] was introduced geared towards ef-
ficient version reconstruction while using small
storage overhead. With the notion of /ifespan which
is represented by two timestamps (Vs Vend), ver—
sions of the XML document are represented[19].
While the performance of RCS degrades poorly as
the changes grow larger, the copy-based UBCC

702 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6. JUNE 2006

sheme[2] achieves the desirable effect when
changes grow larger. When the page usefulness of
a certain version gets down below the minimum
usefulness, the objects in these pages are copied in—
to a new page. It leads to efficient page retrieval
in the construction of versions. It also supports re-
arrangement and duplication of parts of contents
unlike the edit-based UBCC{3]. Editing scripts are
stored separately from document objects in this
scheme whereas they are stored together in RCS
scheme, in which the size of scripts gets large and
version construction time increases as time goes.

3. RELATIONAL TABLES FOR REPRESEN-
TING VERSIONS OF XML DOCUMENTS

Version control has been an important issue in
conventional text and software management. It is
also an important issue in managing XML
documents. As we have seen in section 2, several
methods for managing versions of XML docu-
ments have been developed(1,2,5,19]. In this paper,
we propose a method for managing versions of
XML documents using RDBMS in order to exploit
the benefits of it in managing versions. Unlike the
method[1], selected versions are represented sepa-
rately and others are represented by using the delta
technique.

Special tables are devised for accommodating
the evolution of XML documents. The snapshot ta-
ble contains the structure information of XML
documents of certain versions including the current
version. The structural information of every ver-
sion of the documents is not explicitly represented,
instead the structure information of k-distance
versions which are called snapshot versions are
stored explicitly. The original document is as-
sumed to be a snapshot version. The current ver-
sion of the document is acﬁve. The materialized
versions which are not snapshot versions origi-
nally, however they are materialized during query

processing, are stored in separate table called the

materialized table to be used in further query
processing. The modifications on each version of
the document in the evolution process are kept in
the delta table. The XID table contains the in-
formation of elements and attributes which are in-
serted and deleted in the versions. The version
derivation table keeps the information of the hier-
archical derivation history of versions.

3.1 XID Table

Every element and attribute is stored in the XID
table. A unique identifier which is called XID is
assigned to each of them. The names of them are
represented in the name column. The Ve column
represents the version in which the element or at-
tribute is created and the Vens column represents
the version in which it is eliminated. Now means
the current version. The root column shows
whether the element is a root or not. This column
is applicable to elements only. The attribute column
shows whether it is an attribute or not. The docID
column represents the identification of the
document. An element or attribute which is con-
tained in each version is inserted in XID table. If
it is deleted from a version, it is marked in this table
as deleted by putting the version number in Vend
column of the element or attribute. Figure 1 shows
three versions of an XML document. Version 1
which is the original document is a snapshot ver-
sion and version 3 is also a snapshot version.

3.2 Snapshot Table

The snapshot table contains the structure in-
formation of the versions which are chosen snap-
shot versions. The version column identifies the
version of which the snapshot is constructed. A
version can be specified as a snapshot version by
either explicitly or implicitly. The structure order
in the version is described in terms of bit struc—
tured schema, which is represented in NSN(node

sequence number) column. Level column keeps the

Storing and Retrieval of Multiversion XML Documents in Relational Databases 703

Version 1
<book>
<title> Systematic MS SQL server </title>
<authors>
<author>
<name> Min Jin </name>
<email> mjin@zeus kuyngnam.ackr </email>
</author>
</authors>
<chap ctitle=Database Concept>
<sect> Database Definition </sect>
<sect> Relational Database </sect>
</chap>
<chap ctitle=Install MS SQIL. Server>
<sect> MS SQL Server Products </sect>
<sect> MS SQL Server Installation </sect>
<sect> Check Installation </sect>
</chap>
<chap ctitle=MS SQL Server Tools>
<sect> Service Manager </sect>
<sect> Enterprise Manager</sect>
</chap>
</book>
Version 2

<email> mjin@kuyngnam.ackr </email>
<chap ctitle=Database Concept>

<sect>> Database Definition </sect>

<sect> Relational Database </sect>

<sect> Components of Database </sect>
</chap>
<chap ctitle=Install MS SQL Server>

<sect> MS SQL Server Products </sect>

<sect> MS SQL Server Installation </sect>
</chap>

Version 3
<book>
<title> Systematic MS SQL server </title>
<authors>
<author>
<name> Min Jin </name>
<email> mjin@kuyngnam.ac.kr </email>
. </author>
<author>
<name> B. J. Shin </name>
<email> challenger@kyungnam.ac.kr
</author>
</authors>
<chap ctitle=Database Concept>
<sect> Database Definition </sect>
<sect> Relational Database </sect>
<sect> Components of Database
</chap>
<chap ctitle=Install MS SQL Server>
<sect> MS SQL Server Products </sect>
<sect> MS SQL Server Installation </sect>
</chap>
<chap ctitle=MS SQL Server Tools>
<sect> Service Manager </sect>
<sect> Enterprise Manager</sect>
<sect> Query Analyzer</sect>
</chap>
</book>

Fig. 1. Versions of an XML document.

hierarchical depth of the element or attribute.
Although this information is implied in NSN col-
umn, it is represented in a separate column. The
values of simple elements and attributes are stored
in value column. For the empty elements, NULL
is filled in the column. No value is assigned to
complex elefnents. The current active version is
represented in the snapshot table, of which version
column is set to current. Figure 3 shows an exam-

ple of a snapshot table.

3.3 Materialized Table

Versions which are not snapshot versions origi-

nally, however, are constructed when processing
queries are stored in a separate table to be used
in further query processing. The materialized table
has the following information similar to the snap-
shot table. Figure 4 shows an example bf a mate—
rialized table.

The time indicates when the version is mate-
rialized and the owrner represents the person who
materialized the version.

3.4 Delta Table

The delta table contains modifications of versions
of the document. For each modification operation,

704
docID | XID | Name |Vstart| Vend | Root | Attribute
1 1 book 1 now 1 0
1 2 title 1 now 0 0
1 3 [authors 1 now 0 0
1 4 author 1 now 0 0
1 5 name 1 now | 0 0
1 6 email 1 now 0 0
1 7 chap 1 now 0 0
1 8 ctitle 1 now 0 1
1 9 sect 1 now 0 0
1 10 sect 1 now 0 0
1 11 chap 1 now 0 0
1 12 ctitle 1 now 0 1
1 13 sect 1 now 0 0
1 14 sect 1 now 0 0
1 15 sect 1 2 0 0
1 16 chap 1 now 0 0
1 17 ctitle 1 now | 0 1
1 18 sect 1 now 0 0
1 19 sect 1 now 0 0
1 20 sect 2 now 0 0
1 21 | author 3 Nnow 0 0
1 22 | name 3 now 0 0
1 23 email 3 now 0 0
1 24 sect 3 now 0 0

Fig. 2. An XID table for versions of the XML
document in Figure 1.

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6, JUNE 2008

the corresponding information is stored in this table.
Modifications can be classified into three categories;
insert, delete, and update. One of which is shown
up in the task column for each operation. Vyun repre-
sents the version in which the operation occurrs,
Virepresents the version which is created due to the
operation. If Viom= Vi, the operation occurs within
the version, it means the operation does not trigger
to create a new version. The current value of the
operand is placed in Valae and new value of the oper—
and is stored in Valua. When the operationtriggers
to change the order, current order and new order will
be placed in Posod and Posnes respectively. Figure
5 shows an example of delta table.

3.5 Version Derivation Table

There exists at most one parent version for each
version. The version derivation hierarchy table has
the following information. The snapshot column
indicates whether the version is a snapshot version

doclD XID Version NSN Level Value
1 1 1 1 1
1 2 1 1.1 2 Systematic MS SQL Server
1 3 1 1.2 2
1 4 1 1.2.1 3 :
1 5 1 1.2.1.1 4 Min Jin
1 6 1 1.2.1.2 4 mjin@zeus.kyungnam.ac.kr
1 7 1 1.3 2
1 8 1 1.3.1 3 Database Concept
1 9 1 132 3 Database Definition
1 10 1 1.33 3 Relational Database
1 11 1 14 2
1 12 1 1.4.1 3 Install MS SQL Server
1 13 1 1.4.2 3 MS SQI. Server Products
1 14 1 1.4.3 3 MS SQL Server Installation
1 15 1 1.44 3 Check Installation
1 16 1 15 2
1 17 1 151 3 MS SQL Server Tools
1 18 1 1.5.2 3 Service Manager
1 19 1 153 3 Enterprise Manager
1 1 3 1 1
1 2 3 1.1 2 Step by Step MS SQL Server
1 3 3 1.2 2
1 4 3 1.2.1 3 :
1 5 3 1.2.1.1 4 Min_Jin
1 6 3 1.2.1.2 4 mjin@kyungnm.ac.kr
1 21 3 1.2.2 3
1 22 3 1.2.2.1 4 B.]. Shin
1 23 3 1.2.2.2 4 challenger@kyungnam.ac.kr

Fig. 3. A snapshot table for the versions in Figure 1.

Storing and Retrieval of Multiversion XML Documents in Relational Databases 7056

docID | XID | Version NSN Level Value Time Owner
1 1 2 1 1 2006-5-15 15:30 1000
1 2 2 1.1 2 Systematic MS SQL Server 2006-5-15 15:30 1000
1 3 2 1.2 2 2006-5-15 15:30 1000
1 4 2 1.2.1 3 2006-5-15 15:30 1000
1 5 2 1.2.1.1 4 Min Jin 2006-5-15 15:30 1000
1 6 2 1.2.1.2 4 mjin@zeus.kyungnam.ac kr 2006-5-15 15:30 1000
1 7 2 1.3 2 2006-5-15 15:30 1000
1 8 2 1.3.1 3 Database Concept 2006-5-15 15:30 1000
1 9 2 1.3.2 3 Database Definition 2006-5-15 15:30 1000
1 10 2 1.3.3 3 Relational Database 2006-5-15 15:30 1000
1 11 2 1.34 3 Components of Database 2006-5-15 15:30 1000

Fig. 4. An example of a materialized table.

docID| XID |Vgom| Vi | Task Valola Valnew Posod | PoSnew
1 6 1 2 | update | mjin@zeus kyungnam.ac.kr | mjin@kyungnam.ac.kr 12121212
1 20 1 2 | insert Components of Database 1.3.4
1 15 1 2 delete 144
1 2 2 3 | update | Systematic MS SQL Server| Step by Step MS SQL Server| 1.1 11
1 21 2 3 insert 122
1 22 2 3 insert B. J. Shin 1.2.2.1
1 23 2 3 insert challenger@kyungnam.ac.kr 1.22.2
1 24 2 3 | insert Query Analyzer 154
Fig. 5. A delta table for the versions in Figure 1.
or not. Figure 6 shows an example of aversion der- docID | Version | Parent | Owner Time Snapshot
ivation table. 1 1 1000 | 2006-2-10 10:15 1
1 2 1 1010 | 2006-2-20 12:30 0
4. MANAGING VERSIONS OF XML DOCU- 1 | 3 | 2 |1000]2006-5-10 1430 1

MENTS IN RELATIONAL DATABASES

4.1 Representing Versions

The original XML document is considered as the
first version. When modification operations occur,
the information should be stored in the correspond-
ing tables. Modifications are classified into three
categories. The first one is when modifications oc-
cur within a version. The second one is when mod-
ifications trigger to create a new version which is
not a snapshot version. The third one is when mod-
ifications trigger to create a new version which is
a snapshot version. For each category, the corre-
sponding information is stored in the delta table de—
pending on the operations as shown in Figure 5.

Fig. 6. A version derivation table for the versions
in Figure 1.

4.2 Version Construction

The structure information of snapshot versions
is stored in the snapshot table explicitly. This in-
formation can be exploited in processing queries
against these versions. However, queries can be
thrown against versions of which structures are
not stored explicitly. It is required to construct the
structure of non-snapshot versions. The algorithm

for version reconstruction is shown in Figure 7.

4.3 Performance

Queries in evolution environments of XML

706 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 8, JUNE 2006

Algorithm VersionConstruct(VNumber) {
/* Assume the structure of VNumber is required */
/* When the version is a snapshot or exits in the materialized table, the structure is given, */
/* otherwise the structure should be constructed */
if VNumber is a snapshot version
then retrieve the structure of the version from the snapshot table
else if VNumber exists in the materialized table
then retrieve the structure of the version from materialized table
else begin
find the latest version which appears in the snapshot or materialized table among its ancestors’
let it be LatestVersion
find the path from VNumber to LatestVersion and put the versions on the path in VersionList
/* VersionList contains a list of versions on the path including VNumber */
CurVersion < LatestVersion
/* Apply the operations in the delta table to the corresponding version */
/* along the version list */
repeat
NextVersion «<the earliest version in VersionList
/* NextVersion is the earliest version in the VersionList */
Delete NextVersion from the VersionList
apply the operations on CurVersion to NextVersion in delta table
CurVersion «NextVersion
until NextVersion = VNumber
end
/* Store the structure of the version with VNumber in the materialized table */
store the structure of it in the materialized table

Fig. 7. An algorithm to construct the structure of a version.

documents can be classified into three Categories — Cr=0.01,d=5 - Cr=0.05.d<5
such as horizontal, vertical, and delta queries. e+ Cr=0.01,d=10 =++ Cr=0.05,d=10
Horizontal queries are on the structures of certain 160 —
version_s, which are called structural queries. 140

Vertical queries which are called change queries 120

(=]
S

are on the changes of elements. The snapshot

query belongs to horizontal queries, while evolu-

storage[MB]
w
o

tionary history and continuous query[17] belong to

vertical queries. Unlike the previous work of 20 4

managing versions of XML documents, SQL can 0 : : :
be used in querying the evolution of XML docu- ,
number of versions

e i roach. r scheme is good a .
m nts_m our approach. Our scheme g t Fig. 8. Storage space performance.

supporting delta queries due to the fact that the

information is stored in the delta table. 5. CONCLUSION

The storage requirement depends on the rate of
changes, ¢, and the rate of snapshot versions, which We have proposed a scheme of managing ver-
is the inverse of distance, d, as shown in Fig. 8. sions of XML documents using relational data-

The XMark[10] dataset was used in the experiment. bases. The hierarchical information of XML docu-

Storing and Retrieval of Multiversion XML Documents in Relational Databases

ments are represented in relational tables and the
version information is also stored in the tables. The
structural information of XML documents can be
retrieved from the tables without parsing XML
documents. We can exploit the facilities of RDBMS
in managing versions of XML documents. Thus
SQL can be used in querying changes of XML
documents. All versions of XML documents are not
stored explicitly. The k-distance versions which
are called snapshot versions are explicitly repre-
sented, whereas other versions are represented as
sequences of operations that are stored in the cor-
responding tables. Changes made to elements of
XML documents during the evolution are also
traceable. As the number of versions increases, the
requirement of storage space increases in linear
form depending on the change rate and the rate of
snapshot versions. The benefits of the proposed
method will be verified against more general
datasets.

6. REFERENCES

[1] P. Buneman, S. Khanna, K. Tajima, W. C. Tan,
“Archiving Scientific Data,” Proceedings of
ACM SIGMOD, pp. 1-12, 2002.

[2] S.Y. Chien, V. J. Tsotras, and C. Zaniolo,
“Version Management of XML Documents,”
Proceedings of International Workshop on
the Web and Databases, pp. 75-80, 2000.

[3] S.Y. Chien, V.]. Tsotras, C. Zaniolo, “Copy-
Based versus Edit-Based Version Manage—
ment Schemes for Structured Documents,”
The 11" RIDE-DM Workshop, pp. 95-102,
2001.

[4] S.Y. Chien, V.J. Tsotras, C. Zaniolo, D. Zhang,
“Storing and Querying Multiversion XML
Documents using Durable Node Numbers,”
Proceedings of 2" International Conference
on Web Information Systems Engineering,

- pp. 232-241, 2001.
[5] S.Y. Chien, V.]J. Tsotras, C. Zaniolo, “Efficient

[61]

[71]

(81

(9]

[10]

{11]

[12]

[13]

[14]

707

Management of Multiversion Documents by
Object Referencing,” Proceedings of the 274
VLDB, pp. 291-300, 2001.

S.Y. Chien, V.]J. Tsotras, C. Zaniolo, “Efficient
Schemes for Managing Multiversion XML
Documents,” The VLDB Journal, pp. 332-353,
2002.

M. Fernandez, Y. Kadiyska, A. Morishima, D.
Suciy, W.C. Tan. “A Framework for Publish—
ing Relational Data in XML,” ACM Transac-
tions on Database Systems, Vol. 27, No. 4, pp.
438-493, 2002.

D. Florescu, D. Kossmann, “Storing and
Querying XML Data Using an RDBMS,”
IEEE Data Engineering Bulletin, Vol. 22,
No. 3, pp. 27-34, 1999.

M.J. Rochkind, “The Source Control System,”
IEEE Transactions on Software Engineering,
Vol. SE-1, No. 4, pp. 364-370, 1975.

AR. Schmidt, F. Waas, M.L. Kersten, D.
Florescu, I. Manolescu, M.]J Carey, R. Busse.
“The XML Benchmark Project,” The Technical
report, INS-R0103, CWI, 2001.

J. Shanmugasundaram, J. Kiernan, E. Shekita,
C. Fan, J. Funderburk, “Querying XML Views
of Relational Data,” Proceedings of the 27"
VLDB Conference, pp. 261-270, 2001.

J. Shanmugasundaram, E. Shekita, R. Barr,
M. Carey, B. Lindsay, H. Pirahesh, B.
Reinwald, “Efficiently Publishing Relational
Data as XML Documents,” Proceedings of
the 26" VLDB Conference, pp. 65-76, 2000.
J. Shanmugasundaram, E. Shekita, J. Kiemnan,
R. Krishnamurthy, E. Viglas, J. Naughton, I.
Tatarinov, “A General Technique for Query-
ing XML Documents Using a Relational
Database System,” SIGMOD Record, Vol. 30,
No. 3. pp. 20-26, 2001.

J. Shanmugasundaram, K. Tufte, G. He, C.
Zhang, D. Dewitt, J. Naughton, “Relational
Databases for Querying XML Documents:
Limitations and Opportunities,” Proceedings

708

[15].

[16]

(17

[18]

(19]

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 9, NO. 6, JUNE 2006

of the 25" VLDB Conference, pp. 302-314,
1999,

B.J. Shin, M. Jin, “Storing and Querying XML
Documents Using a Path Table in Relational
Databases,” The 1% International Workshop
on XML Schema and Data Management held
in conjunction with ER2003, pp. 285-296, 2003.
K. Beyer, J.
Shanmugasundaram, E. Shekita, C. Zhang,

I. Tatarinov, S.D. Viglas,

“Storing and Querying Ordered XML Using
a Relational Database System,” SIGMOD
Conference 2002, pp. 204~215, 2002.

W.F. Tichy, “RCS-A System for Version
Control,” Software-Practice and Experience,
Vol. 15(7), pp. 637-654, 1985.

F. Wang, C. Zaniolo, “Publishing and Query-
ing the Histories of Archived Relational
Databases in XML,” WISE 2003, pp. 93-102,
2003.

F. Wang, C. Zaniolo, “Temporal Queries and
Version Management for XML Document
Archives,” Journal of Applied Logic, Special

Issue on Temporal Reasoning and its
Applications, pp. 1-20, 2004.

[20] C. Zhang, J.F. Naughton, D. DeWitt, Q. Luo,
G. Lohman, “On Supporting Containment
Queries in Relational Database Management
Systems,” Proceedings of ACM SIGMOD
Conference, pp. 425-436, 2001.

Min Jin

He received the B.S degree in
computer science and statistics
from Seoul National University
in 1982, and the M.S degree in
computer science from KAIST
in 1984, and the Ph.D. degree in
computer science and engineer-
ing from the University of Connecticut in 1997. He has
been working at Kyungnam University since 1985. He
is currently a professor in the division of computer
engineering. His research interests include data mod-
eling, object-oriented database, version management,
and XML storage and processing.

