Online Character Recognition Technique Using PCA

PCA를 이용한 온라인 문자인식 기법

  • 유재만 (광운대학교 컴퓨터과학과) ;
  • 김우생 (광운대학교 컴퓨터공학부) ;
  • 한정훈 (광운대학교 컴퓨터과학과)
  • Published : 2006.04.01

Abstract

Online character recognition techniques have been applied in many new fields of PDA, Tablet PC etc. But the recognition techniques can not use such high technologies naturally yet. Hidden Markov Model (HMM) that is much used recently requires high memory space and complex computational tasks because of comparing the input data with entire standard patterns. In this paper we propose a method to recognize the online characters more efficiently. At first we create chain-codes of learning data and recognition data in preprocessing phase, and then we compress dimensions of data using Principal Component Analysis (PCA) and recognize a character compressed data in recognition phrase. Validity of proposed method .is verified. by experiment results.

온라인 문자 인식 기술은 PDA, 타블릿 PC 등 많은 새로운 응용에서 사용되고 있으나, 인식 기술은 아직 이러한 첨단 도구들을 자연스럽게 이용하기에는 못 미치는 실정이다. 또한 최근 많이 사용되는 은닉 마르코프 모델(HMM)은 입력패턴을 전체 표준패턴과 비교함으로써 많은 기억장소와 계산량을 필요로 하는 단점을 지니고 있다. 따라서 본 논문에서는 더욱 효율적으로 온라인 문자 인식을 가능하게 하는 방법을 제안한다. 본 연구에서는 전처리 단계를 거쳐 학습 데이터와 인식 데이터의 체인코드를 생성하고, 인식 단계에서 입력 데이터에 주성분 분석(PCA) 기법을 적용하여 데이터의 차원을 줄여 문자를 인식한다. 제안하는 방법의 타당성은 실험을 통해서 검증한다.

Keywords