DOI QR코드

DOI QR Code

A Study on the Risk - based Local Normal CSOs Curve Designs

위험도 기반 지역별 정규 CSOs 곡선 설계에 관한 연구

  • 조덕준 (동서대학교.건축토목시스템공학부)
  • Published : 2006.07.01

Abstract

This paper presents a systematic approach for the economical design of stormwater quality control systems. For the design of runoff quality control system (RQCS), the rainfall-runoff process requires the local rainfall data recorded continuously. In this study the rainfall probability distribution is assumed to follow an exponential decay function. Applying the exponential decay function, the normalized curves are derived to explain the non-exceedance probability distributions. The optimal curves for the determination of the RQCS size are derived based on the overflow risk. Comparison of the optimal capture volume and peak runoff rate to those computed by an urban rainfall-runoff model(ILLUDAS) demonstrates that the optimal CSOs(Combined Sewer Overflows) curves derived in this study can be utilized for the design of stormwater quality control systems in Korea avoiding an excessive computational effort based on over flow risks.

본 연구에서는 강우로 인한 유출 유량의 수질 조절 시스템의 경제적인 설계절차를 제시하였다. 유출수의 수질 조절 시스템 계획을 위해서는 전 기간치의 국지 연속강우기록에 대한 강우-유출 과정의 모의를 하여야 한다. 본 연구에서 강우의 확률분포는 지수감소함수를 따른다고 가정하여 적용함으로서 비 초과확률 분포를 설명할 수 있는 정규곡선을 유도하였다. 또한 유출수의 수질 조절시스템의 저류용량 및 유량 결정을 위하여 월류 위험도를 기반으로 최적곡선을 유도하였다. 최적 저류용량 및 유량의 적용성을 강우 유출 모형인 ILLUDAS에 의한 분석결과와 비교하였으며 본 연구에서와 같이 최적 CSOs(Combined Sewer Overflows)을 지역별로 유도하게 되면 강우로 인한 유출 유량의 수질 조절시스템을 적은 노력과 시간으로 위험도를 기반으로 계획에 이용 될 수 있을 것으로 기대된다.

Keywords

References

  1. Adams, B.J. and Papa, F. (2000). Urban Stormuxuer Management Planning with Analytical Probabilistic Models. John Wiley & Sons, INC. U.S.A
  2. Adams, B.J., Fraser, H.G., Howard, C.D.D. and Hanafy, M.S. (1986). 'Meteorological Data Analysis for Urban Drainage System Design,' Journal of Environmental Engineering, Vol. 112, No.5, pp. 8Z7-848
  3. Bedient, P.B., and Huber, W.C. (1992). Hydrology and Floodplain Analysis, 2nd Ed, Addison Wesley, New York
  4. Driscoll, E.D, Palhegyi, G.E., Strecker, E.W, and Shelley, P.E. (1989). Analysis of storm events daracteristics for selected rainfall gauges throughout the United States, U.S. Environmental Protection Agency, Washington, D.C
  5. Guo, J.C.Y., and Hughes, W. (2001). 'Storage volume and overflow risk for infiltration basin design.' J. Irrig. Drain. Eng., 127(3), pp. 170-175 https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(170)
  6. Guo, J.C.Y., and Urbonas, R.B. (1996). 'Maximized detention volume determined by runoff capture ratio.' Journal of Water Resour. Plan Manage., 122(1), pp. 33-39 https://doi.org/10.1061/(ASCE)0733-9496(1996)122:1(33)
  7. Guo, J.C.Y., and Urbonas, R.B. (2002). 'Runoff Capture and Delivery Curves for Storm-Water Quality Control Designs' Journal of Water Resour. Plan Manage., 128(3), pp. 208-215 https://doi.org/10.1061/(ASCE)0733-9496(2002)128:3(208)
  8. Heaney, J.P., Huber, we; Medina, MA, Jr., Murphy, M.P., Nix, S.J., and Hasan, S.M. (1977). Nationwide Assessment of Combined Sewer Overflows and Urban Stormwater Discharges: Vol. II, Cost Assessment, US. EPA-600/2-77-064,
  9. Korea Institute of Construction Technology (KlCT, 2000) Analysis of Temporal Variation for Determining the Local Design Rainfall, pp. 61-66
  10. Nix, S.J. (1994). Urban Stormwater Modeling and Simulation; Lewis Publishers, Boca Raton, FL
  11. US. EPA (1983). Results of the nationunde urban runoff program; final report, NTIS No. PB84-185545, Washington, D.C
  12. U.S. EPA (1986). Methodology for analysis of detention basins for control of urban runoff quality, EPA440/5-87-001, Washington, D.C

Cited by

  1. Evaluation of the Concept of Critical Rainfall Duration by Bivariate Frequency Analysis of Annual Maximum Independent Rainfall Event Series in Seoul, Korea vol.21, pp.1, 2016, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001259