Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won (School of Chemical Engineering, Pusan National University) ;
  • Kim Yong-Seok (School of Chemical Engineering, Pusan National University) ;
  • Chang Gap-Shik (School of Chemical Engineering, Pusan National University)
  • Published : 2006.06.01

Abstract

Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Keywords

References

  1. A. Margaritis and 1. E. Zajic, Biotechnol. Bioeng., 20, 939 (1978) https://doi.org/10.1002/bit.260200702
  2. K. S. Kang and D. 1. Pettit in 'Industrial Gums', 3rd ed. (R. L. Whistler and 1. N. Be Miller Eds.), pp.341-398, Academic Press, New York, USA, 1993
  3. H. Schott, 'Remington's Pharmaceutical Sciences', 18th ed., p.1308, Mack Publishing, Easton, PA, USA, 1990
  4. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, Biotechno!. Adv., 18, 549 (2000) https://doi.org/10.1016/S0734-9750(00)00050-1
  5. G. Gallino, M. Migliori, and B. de Cindio, Rheo!. Acta, 40, 196 (2001) https://doi.org/10.1007/s003970000153
  6. E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams, Biopolymers, 59, 339 (2001) https://doi.org/10.1002/1097-0282(20011015)59:5<339::AID-BIP1031>3.0.CO;2-A
  7. J. Moreno, M. A. Vargas, .J. M. Madiedo, .J. Munoz, .J. Rivas, and M. G. Guerrero, Biotechnol. Bioeng., 67, 283 (2000) https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<283::AID-BIT4>3.0.CO;2-H
  8. F. Garcia-Ochoa, V. E. Santos, and A. Alcon, Chem. Biochem. Eng. J., 11,69 (1997)
  9. .J. A. Casas, V. E. Santos, and F. Garcia-Ochoa, Enzyme Microbial Technol., 26, 282 (2000) https://doi.org/10.1016/S0141-0229(99)00160-X
  10. F. Garcia-Ochoa and E. Gomez, Biochem. Eng. J., 1, I (1998) https://doi.org/10.1016/S1369-703X(97)00002-8
  11. P. J. Whitcomb and C. W. Macosko, J. Rheol., 22, 493 (1978) https://doi.org/10.1122/1.549485
  12. G. B. Thurston, J. Non-Newt. Fluid Mech., 9, 57 (1981) https://doi.org/10.1016/0377-0257(87)87006-4
  13. G. B. Thurston and G. A. Pope, J. Non-Newt. Fluid Mech.,9,69 (1981)
  14. S. B. Ross-Murphy, V. J. Morris, and E. R. Morris, Faraday Symp. Chem. Soc., 18, 115 (1983)
  15. R. K. Richardson and S. B. Ross-Murphy, Intern. J BioI. Macromol., 9, 257 (1987) https://doi.org/10.1016/0141-8130(87)90063-8
  16. G. Cuvelier and B. Launay, Carbohydr. Polym., 6, 321 (1986) https://doi.org/10.1016/0144-8617(86)90023-8
  17. W. E. Rochefort and S. Middleman, J. Rheol., 31, 337 (1987) https://doi.org/10.1122/1.549953
  18. K. C. Tam and C. Tiu, J. Rheo!., 33, 257 (1989) https://doi.org/10.1122/1.550015
  19. K. C. Tam and C. Tiu, J. Non-Newt. Fluid Mech., 46, 275 (1993) https://doi.org/10.1016/0377-0257(93)85050-K
  20. A. K. Podolsak, C. Tiu, T. Saeki, and H. Usui, Polym. Intern., 40, 155 (1996) https://doi.org/10.1002/(SICI)1097-0126(199607)40:3<155::AID-PI537>3.0.CO;2-N
  21. A. Giboreau, G. Cuvelier, and B. Launay, J. Texture Studies, 25, 119 (1994) https://doi.org/10.1111/j.1745-4603.1994.tb01321.x
  22. T. Yoshida, M. Takahashi, T. Hatakeyama, and H. Hatakeyama, Polymer, 39, 1119 (1998) https://doi.org/10.1016/S0032-3861(97)00266-8
  23. J. Fujiwara, T. Iwanami, M. Takahashi, R. Tanaka, T. Hatakeyama, and H. Hatakeyama, Thermochimica Acta, 352/353, 241 (2000) https://doi.org/10.1016/S0040-6031(99)00472-4
  24. T. Iseki, M. Takahashi, H. Hattori, T. Hatakeyama, and H. Hatakeyama, Food Hydrocolloids, 15,503 (2001) https://doi.org/10.1016/S0268-005X(01)00088-1
  25. B. Urlacher and O. Noble in 'Thickening and Gelling Agents for Food : Xanthan Gums', (A. Imeson Eds.), pp.284-312, Blackie Academic & Professional, London, UK,1997
  26. M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy, Food Res. Intern., 34, 695 (2001) https://doi.org/10.1016/S0963-9969(01)00091-6
  27. T. Ahmed and H. S. Ramaswamy, Food Hydrocolloids, 18, 367 (2004) https://doi.org/10.1016/S0268-005X(03)00123-1
  28. R. Lapasin and S. Pricl, 'Rheology of Industrial Polysaccharides : Theory and Applications', Aspen Publishers, Gaithersburg, MD, USA, 1999erpo
  29. B. T. Stokke, B. E. Christensen, and O. Smidsrod in 'Polysaccharides : Structural Diversity and Functional Versatility - Macromolecular Properties of Xanthan', (S. Dumitriu Eds.), pp.433-472, Marcel Dekker, New York, USA,1998
  30. R. Moorhouse, M. D. Walkinshaw, and S. Arnott, Amer. Chem. Soc. Symp. Ser., 45, 90 (1977)
  31. G. Holzwarth and E. B. Prestridge, Science, 197, 757 ( 1977) https://doi.org/10.1126/science.887918
  32. T. A. Camesano and K. J. Wilkinson, Biomacromolecules, 2, 1184 (2001) https://doi.org/10.1021/bm015555g
  33. K. Ogawa and T. Yui in 'Polysaccharides : Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides', (S. Dumitriu Eds.), pp.101-130, Marcel Dekker, New York, USA, 1998
  34. K. Born, V. Langendorff, and P. Boulenguer, 'Biopolymers', Vol. 5, pp.259-29I , Wiley-Interscience, New York, USA,2001
  35. B. Katzbauer, Polym. Degrad. Stability, 59,81 (1998) https://doi.org/10.1016/S0141-3910(97)00180-8
  36. M. A. Zimsak, D. V. Boger, and V. Tirtaatmadja, J. Rheol., 43,627 (1999) https://doi.org/10.1122/1.551007
  37. G. S. Chang, J. S. Koo, and K. W. Song, Korea-Australia Rheol. J, 15,55 (2003)
  38. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, J. Korean Pharm. Sci., 29, 193 (1999)
  39. G. Harrison, G. V. Franks, V. Tirtaatmadja, and D. V. Boger, Korea-Australia Rheol. J., 11, 197 (1999)
  40. T. Moschakis, B. S. Murray, and E. Dickinson, J. Colloid Inter! Sci., 284, 714 (2005) https://doi.org/10.1016/j.jcis.2004.10.036
  41. H. A. Barnes and K. Walters, Rheol. Acta, 24, 323 (1985) https://doi.org/10.1007/BF01333960
  42. J. P. Hartnett and R. Y. Z. Hu, J. Rheol., 33, 671 (1989) https://doi.org/10.1122/1.550006
  43. G. Astarita, J. Rheol., 34, 275 (1990) https://doi.org/10.1122/1.550142
  44. I. D. Evans, J. Rheol., 36, 1313 (1992) https://doi.org/10.1122/1.550262
  45. G. Astarita, J. Rheol., 36, 1317 (1992)
  46. J. Schurz, J. Rheol., 36, 1319 (1992) https://doi.org/10.1122/1.550263
  47. H. A. Barnes, J. Non-Newt. Fluid Mech., 81, 133 (1999) https://doi.org/10.1016/S0377-0257(98)00094-9
  48. C. Balan, Appl. Rheol., 9, 58 (1999)
  49. H. A. Barnes, Appl. Rheol., 9, 262 (1999)
  50. D. Hadjistamov, Appl. Rheol., 13, 209 (2003)
  51. Q. D. Nguyen and D. V. Boger, Ann. Rev. Fluid Mech., 24, 47 (1992) https://doi.org/10.1146/annurev.fl.24.010192.000403
  52. P. V. Liddel and D. V. Boger, J. Non-Newt. Fluid Mech., 63,235 (1996) https://doi.org/10.1016/0377-0257(95)01421-7
  53. M. A. Rao and J. F. Steffe, Food Technol., 51, 50 (1997)
  54. C. W. Pernell, E. A. Foegeding, and C. R. Daubert, J. Food Sci., 65, 110 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb15964.x
  55. P. H. Huh, G. S. Chang, J. O. Lee, K. W. Song, and C. H. Lee, Theor. Appl. Rheol., 4, 45 (2000)
  56. H. A. Barnes and Q. D. Nguyen, J. Non-Newt. Fluid Mech.,98,1 (2001) https://doi.org/10.1016/S0377-0257(01)00095-7
  57. G. P. Roberts, H. A. Barnes, and C. Carew, Chern. Eng. Sci., 56, 5617 (2001) https://doi.org/10.1016/S0009-2509(01)00291-3
  58. P. O. Brunn and H. Asoud, Rheol. Acta, 41, 524 (2002) https://doi.org/10.1007/s00397-002-0234-2
  59. J. R. Stokes and J. H. Telford, J. Non-Newt. Fluid Mech., 124,137 (2004) https://doi.org/10.1016/j.jnnfm.2004.09.001
  60. P. H. T. Uhlherr, J. Guo, C. Tiu, X. M. Zhang, J. Z. Q. Zhou, and T. N. Fang, J. Non-Newt. Fluid Mech., 125,101 (2005) https://doi.org/10.1016/j.jnnfm.2004.09.009
  61. E. C. Bingham, 'Fluidity and Plasticity', pp.215-218, McGraw-Hili, New York, USA, 1922
  62. N. Casson in 'Rheology of Disperse Systems' (C. C. Mill Eds.), p.84, Pergamon Press, London, UK, 1959
  63. W. H. Herschel and R. Bulkley, Kolloid Zeit., 39, 291 (1926) https://doi.org/10.1007/BF01432034
  64. S. Mizrahi and Z. Berk, J. Texture Studies, 3, 69 (1972) https://doi.org/10.1111/j.1745-4603.1972.tb00610.x
  65. W. Heinz, Material Priifung. 1, 311 (1959)
  66. J. A. Garcia-Ochoa and J. A. Casas, Chern. Eng. J, 53, B41 (1994)
  67. K. W. Song and G. S. Chang, Korean J. Rheol., 11, 143 (1999)
  68. P. J. Carreau, D. C. R. De Kee, and R. P. Chhabra, 'Rheology of Polymeric Systems: Principles and Applications', pp.84-102, Hanser/Gardner Publications, Cincinnati, OH, USA,1997
  69. M. E. Ortiz, D. C. R. De Kee, and P. J. Careau, J. Rheol., 38,519 (1994) https://doi.org/10.1122/1.550472