Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Bae Gab-Yong (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Chae Jung-Il (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yu Kweon (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Koo Deog-Bon (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee Kyung-Kwang (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Han Yong-Mahn (Laboratory of Development and Differentiation, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2006.06.01

Abstract

Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

Keywords

References

  1. Ambrosetti DC, Basilico C, Dailey L (1997): Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol 17:6321-6329 https://doi.org/10.1128/MCB.17.11.6321
  2. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004): Feeder Layer- and Serum-Free Culture of Human Embryonic Stem Cells. Biol Reprod 70:837-845 https://doi.org/10.1095/biolreprod.103.021147
  3. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999): Notch signaling: cell fate control and signal integration in development. Science 284:770-776 https://doi.org/10.1126/science.284.5415.770
  4. A vilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003): Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126-140 https://doi.org/10.1101/gad.224503
  5. Axelson H (2004): The Notch signaling cascade in neuroblastoma: Role of the basic helix-loop-helix proteins HASH-1 and HES-1. Cancer Lett 204:171-178 https://doi.org/10.1016/S0304-3835(03)00453-1
  6. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002): Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753-4761
  7. Ben-Shushan E, Thompson JR, Gudas LJ, Bergman Y (1998): Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol 18:1866-1878 https://doi.org/10.1128/MCB.18.4.1866
  8. Burdon T, Chambers I, Stracey C, Niwa H, Smith A (1999): Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs 165:131-143 https://doi.org/10.1159/000016693
  9. Burdon T, Smith A, Savatier P (2002): Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12:432-438 https://doi.org/10.1016/S0962-8924(02)02352-8
  10. Burdon T, Stracey C, Chambers I, Nichols J, Smith A (1999): Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210:30-43 https://doi.org/10.1006/dbio.1999.9265
  11. Cadigan KM, Nusse R (1997):Wnt Signaling: A common theme in animal development. Genes Dev 11:3286-3305 https://doi.org/10.1101/gad.11.24.3286
  12. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003): Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655 https://doi.org/10.1016/S0092-8674(03)00392-1
  13. Chuang PT, Kornberg TB (2000): On the range of hedgehog signaling. Curr Opin Genet Dev 10:515-522 https://doi.org/10.1016/S0959-437X(00)00121-0
  14. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, Feinstein E, Einat P, Ben-Ze'ev A (2002): Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16:2058-2072 https://doi.org/10.1101/gad.227502
  15. Daheron L, Opitz SL, Zaehres H, Lensch WM., Andrews PW, Itskovitz-Eldor J, Daley GQ (2004): LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770-778 https://doi.org/10.1634/stemcells.22-5-770
  16. Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005): Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233-247 https://doi.org/10.1016/j.cytogfr.2005.01.007
  17. Evans MJ, Kaufman MH (1981): Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156 https://doi.org/10.1038/292154a0
  18. Feldman B, Poueymirou W, Papaioannou VE, De-Chiara TM, Goldfarb M (1995): Requirement of FGF-4 for postimplantation mouse development. Science 267:246-249 https://doi.org/10.1126/science.7809630
  19. Fortunel NO, Otu HH, Ng HH, Chen J, Mu X, Chevassut T, Li X, Joseph M, Bailey C, Hatzfeld JA, Hatzfeld A, Usta F, Vega VB., Long PM, Libermann TA, Lim B (2003): Comment on ' 'Stemness': transcriptional profiling of embryonic and adult stem cells' and 'a stem cell molecular signature'. Science 302:393; author reply 393
  20. Goldfarb M (1996): Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 7:311-325 https://doi.org/10.1016/S1359-6101(96)00039-1
  21. Goodrich LV, Scott MP (1998) Hedgehog and patched in neural development and disease. Neuron 21:1243-1257 https://doi.org/10.1016/S0896-6273(00)80645-5
  22. Goumans MJ, Mummery C (2000): Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253-265
  23. Hanna LA, Foreman RK, Tarasenko lA, Kessler DS, Labosky PA (2002): Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 16:2650-2661 https://doi.org/10.1101/gad.1020502
  24. Harper JA, Yuan JS, Tan JB, Visan I, Guidos CJ (2003): Notch signaling in development and disease. Clin Genet 64:461-472 https://doi.org/10.1046/j.1399-0004.2003.00194.x
  25. Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004): Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539-5550 https://doi.org/10.1242/dev.01436
  26. Iso T, Hamamori Y, Kedes L (2003): Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 23:543-553 https://doi.org/10.1161/01.ATV.0000060892.81529.8F
  27. Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000): Role of Gab1 in heart, placenta, and skin development and growth factorand cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 20:3695-3704 https://doi.org/10.1128/MCB.20.10.3695-3704.2000
  28. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002): A stem cell molecular signature. Science 298:601-604 https://doi.org/10.1126/science.1073823
  29. James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005): TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273-1282 https://doi.org/10.1242/dev.01706
  30. Johansson BM, Wiles MV (1995):Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 15:141-151 https://doi.org/10.1128/MCB.15.1.141
  31. Johnson RL, Tabin C (1995): The long and short of hedgehog Signaling. Cell 81:313-316 https://doi.org/10.1016/0092-8674(95)90381-X
  32. Jones JI, Clemmons DR (1995): Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3-34
  33. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman, I.L., Uchida, N., Palmer, T., and Steinberg, G.K. (2004): Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839-11844
  34. Kola I, Brookes S, Green AR, Garber R, Tymms M, Papas TS, Seth A (1993): The Ets1 transcription factor is widely expressed during murine embryo development and is associated with mesodermal cells involved in morphogenetic processes such as organ formation. Proc Natl Acad Sci USA 90:7588-7592
  35. Martin GR (1998): The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12: 1571-1586 https://doi.org/10.1101/gad.12.11.1571
  36. Massague J, Blain SW, Lo RS (2000): TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295-309 https://doi.org/10.1016/S0092-8674(00)00121-5
  37. Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T (1999): STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 18:4261-4269 https://doi.org/10.1093/emboj/18.15.4261
  38. Maye P, Becker S, Kasameyer E, Byrd N, Grabel L (2000): Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech Dev 94:117-132 https://doi.org/10.1016/S0925-4773(00)00304-X
  39. Maye P, Becker S, Siemen H, Thorne J, Byrd N, Carpentino J, Grabel L (2004): Hedgehog signaling is required for the differentiation of ES cells into neurectoderm. Dev Biol 265:276-290 https://doi.org/10.1016/j.ydbio.2003.09.027
  40. McMahon AP, Ingham PW, Tabin CJ (2003): Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1-114 https://doi.org/10.1016/S0070-2153(03)53002-2
  41. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003): The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631-642 https://doi.org/10.1016/S0092-8674(03)00393-3
  42. Muenke M, Schell U (1995): Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet 11:308-313 https://doi.org/10.1016/S0168-9525(00)89088-5
  43. Naski MC, Ornitz DM (1998): FGF signaling in skeletal development. Front Biosci 3:d781-794 https://doi.org/10.2741/A321
  44. Nelson WJ, Nusse R (2004): Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303: 1483-1487 https://doi.org/10.1126/science.1094291
  45. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998):Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
  46. Niwa H. (2001): Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26: 137-148 https://doi.org/10.1247/csf.26.137
  47. Niwa H, Burdon T, Chambers I, Smith A (1998): Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12: 2048-2060 https://doi.org/10.1101/gad.12.13.2048
  48. Niwa H, Miyazaki J, Smith AG (2000): Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372-376 https://doi.org/10.1038/74199
  49. Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, Wickramasinghe R, Scott MP, Wechsler-Reya RJ (2003): Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100:7331-7336
  50. Ornitz DM, Itoh N (2001): Fibroblast growth factors. Genome Biol 2: REVIEWS3005
  51. Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL (2000):Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593-1605
  52. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002): 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 298:597-600 https://doi.org/10.1126/science.1072530
  53. Raz R, Lee CK, Cannizzaro LA, d'Eustachio P, Levy DE (1999): Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 96: 2846-2851
  54. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003): A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409-414 https://doi.org/10.1038/nature01593
  55. Rho JY, Yu K, Han JS, Chae JI, Koo DB, Yoon HS, Moon SY, Lee KK, Han YM (2006): Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells. Hum Reprod 21:405-412 https://doi.org/10.1093/humrep/dei328
  56. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM (1990): A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345: 686-692 https://doi.org/10.1038/345686a0
  57. Ruiz i Altaba A, Sanchez P, Dahmane N. (2002): Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2:361-372 https://doi.org/10.1038/nrc796
  58. Sachs M, Brohmann H, Zechner D, Muller T, Hulsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W (2000): Essential role of Gabl for signaling by the c-Met receptor in vivo. J Cell Biol 150: 1375-1384 https://doi.org/10.1083/jcb.150.6.1375
  59. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004): Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55-63 https://doi.org/10.1038/nm979
  60. Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH (2003): Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260:404-413 https://doi.org/10.1016/S0012-1606(03)00256-2
  61. Schier AF, Shen MM (2000): Nodal signalling in vertebrate development. Nature 403:385-389 https://doi.org/10.1038/35000126
  62. Scholer HR, Balling R, Hatzopoulos AK, Suzuki N, Gruss P (1989): Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8:2551-2557
  63. Schweisguth F (2004): Notch signaling activity. Curr Biol 14:R129-138 https://doi.org/10.1016/j.cub.2004.01.023
  64. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988): Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688-690 https://doi.org/10.1038/336688a0
  65. Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002): Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320-8333 https://doi.org/10.1038/sj.onc.1206015
  66. Tremblay KD, Hoodless PA, Bikoff EK, Robertson EJ (2000): Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 127:3079-3090
  67. Whitman M (1998): Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev 12:2445-2462 https://doi.org/10.1101/gad.12.16.2445
  68. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988): Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684-687 https://doi.org/10.1038/336684a0
  69. Wilson SI, Edlund T (2001): Neural induction: toward a unifying mechanism. Nat Neurosci 4 Suppl: 1161-1168
  70. Winnier G, Blessing M, Labosky PA, Hogan BL (1995): Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105-2116 https://doi.org/10.1101/gad.9.17.2105
  71. Xie Y, Wang Y, Sun T, Wang F, Trostinskaia A, Puscheck E, Rappolee DA (2005): Six post-implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells. Mol Reprod Dev 71:1-11 https://doi.org/10.1002/mrd.20116
  72. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999): T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13:3185-3190 https://doi.org/10.1101/gad.13.24.3185
  73. Yamane T, Dylla SJ, Muijtjens M, Weissman IL (2005): Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. Proc Natl Acad Sci USA 102:3312-3317
  74. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003): Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183-186 https://doi.org/10.1038/nbt780
  75. Yoshida K, Chambers I, Nichols J, Smith A, Saito M, Yasukawa K, Shoyab M, Taga T, Kishimoto T (1994): Maintenance of the pluripotentialphenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech Dev 45:163-171 https://doi.org/10.1016/0925-4773(94)90030-2
  76. Yuan H, Corbi N, Basilico C, Dailey L (1995): Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9:2635-2645 https://doi.org/10.1101/gad.9.21.2635
  77. Zwijsen A, Verschueren K, Huylebroeck D (2003): New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett 546:133-139 https://doi.org/10.1016/S0014-5793(03)00566-0