빈발단어집합을 이용한 NaiveBayes의 정확도 개선

An Improvement of Accuracy for NaiveBayes by Using Large Word Sets

  • 이재문 (한성대학교 멀티미디어공학과)
  • 발행 : 2006.06.01

초록

본 논문은 연관규칙탐사 기술에서 사용되는 빈발항목집합을 변형하여 문서분류의 문서에서 빈발단어집합을 정의하고, 이를 사용하여 문서분류 방법으로 잘 알려진 NaiveBayes에 적용하여 이 방법의 정확도를 개선한다. 이 기술의 적용을 위하여 하나의 문서는 여러 개의 문단으로 나뉘어졌으며, 각 문단에 나타나는 단어들의 집합을 트랜잭션화하여 빈발단어 집합을 찾을 수 있도록 하였다. 제안한 방법은 Al::Categorizer 프레임워크에서 구현되었으며 로이터-21578 데이터를 사용하여 그 정확도가 측정되었다. 문단에서의 라인수와 학습문서의 크기를 변화하면서 정확도를 측정하였다. 측정된 결과로부터 제안된 방법이 기존의 방법에 비하여 정확도를 개선한다는 사실을 알 수 있었다.

In this paper, we define the large word sets which are noble variations the large item sets in mining association rules, and improve the accuracy for NaiveBayes based on the defined large word sets. In order to use them, a document is divided into the several paragraphs, and then each paragraph can be transformed as the transaction by extracting words in it. The proposed method was implemented by using Al:Categorizer framework and its accuracies were measured by the experiments for reuter-21578 data set. The results of the experiments show that the proposed method improves the accuracy of the conventional NaiveBayes.

키워드