False Alarm Minimization Technology using SVM in Intrusion Prevention System

SVM을 이용한 침입방지시스템 오경보 최소화 기법

  • 김길한 (한신대학교 컴퓨터정보소프트웨어학부) ;
  • 이형우 (한신대학교 컴퓨터정보소프트웨어학부)
  • Published : 2006.06.01

Abstract

The network based security techniques well-known until now have week points to be passive in attacks and susceptible to roundabout attacks so that the misuse detection based intrusion prevention system which enables positive correspondence to the attacks of inline mode are used widely. But because the Misuse detection based Intrusion prevention system is proportional to the detection rules, it causes excessive false alarm and is linked to wrong correspondence which prevents the regular network flow and is insufficient to detect transformed attacks, This study suggests an Intrusion prevention system which uses Support Vector machines(hereinafter referred to as SVM) as one of rule based Intrusion prevention system and Anomaly System in order to supplement these problems, When this compared with existing intrusion prevention system, show performance result that improve about 20% and could through intrusion prevention system that propose false positive minimize and know that can detect effectively about new variant attack.

지금까지 잘 알려진 네트워크 기반 보안 기법들은 공격에 수동적이고 우회한 공격이 가능하다는 취약점을 가지고 있어 인라인(in_line) 모드의 공격에 능동적 대응이 가능한 오용탐지 기반의 침입방지시스템의 출현이 불가피하다. 하지만 오용탐지 기반의 침입방지시스템은 탐지 규칙에 비례하여 과도한 오경보(False Alarm)를 발생시켜 정상적인 네트워크 흐름을 방해하는 잘못된 대응으로 이어질 수 있어 기존 침입탐지시스템보다 더 위험한 문제점을 갖고 있으며, 새로운 변형 공격에 대한 탐지가 미흡하다는 단점이 있다. 본 논문에서는 이러한 문제를 보완하기 위해 오용탐지 기반의 침입방지시스템과 Anomaly System 중의 하나인 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입방지시스템 기술을 제안한다. 침입 방지시스템의 탐지 패턴을 SVM을 이용하여 진성경보만을 처리하는 기법으로 실험결과 기존 침입방지시스템과 비교하여, 약 20% 개선된 성능결과를 보였으며, 제안한 침입방지시스템 기법을 통하여 오탐지를 최소화하고 새로운 변종 공격에 대해서도 효과적으로 탐지 가능함을 보였다.

Keywords