Ozone Impacts on Soluble Carbohydrates, Antioxidant Activity and Macro-element Concentrations in Rice Seedling

  • Sung Jwa-Kyung (National Institute of Agricultural and Science Technology, RDA) ;
  • Park So-Hyeon (National Institute of Agricultural and Science Technology, RDA) ;
  • Lee Su-Yeon (National Institute of Agricultural and Science Technology, RDA) ;
  • Lee Ju-Young (National Institute of Agricultural and Science Technology, RDA) ;
  • Jang Byoung-Choon (National Institute of Agricultural and Science Technology, RDA) ;
  • Hwang Seon-Woong (National Institute of Highland Agriculture, RDA) ;
  • Kim Tae-Wan (Department of Plant Resources and Science, Hankyong National University) ;
  • Song Beom-Heon (Department of Agronomy, Chungbuk National University)
  • Published : 2006.06.01

Abstract

The present study describes carbohydrate metabolism, macro-element utilization and antioxidant defenses in response to an ozone dose (100 ppb, 8d) in two rice varieties. Tolerant (cv. Jinpumbyeo) and sensitive (cv. Chucheongbyeo) varieties of rice were grown in growth chamber for 30 days after sowing. Concentrations of chloroplast pigments and non-structural carbohydrates as well as activity of antioxidant enzymes were determined to evaluate the resistance against ozone stress. Ozone caused the decrease in chlorophyll a and carotenoid contents, and also resulted in faster decomposition of non-structural carbohydrate in leaf blade and leaf sheath. The contents of nitrogen and potassium in leaves were visibly decreased in cv. Chucheongbyeo with an increase in ozone exposure, but not in cv. Jinpumbyeo. Enzymatic antioxidants against ROS in both varieties responded in the order of POD, SOD and CAT, and their capacity was stronger in cv. Jinpumbyeo.

Keywords

References

  1. Alscher, R. and J. Hess. 1993. Antioxidants in Higher Plants. CRC Press. Boca Raton
  2. Barnes, J. D., J. H. Ollemshaw, and C. P. Whitfield. 1995. Effects of elevated $CO_{2}$ and/or $O_{3}$ on growth, development and physi­ology of wheat (Triticum aestivum L.). Global Change Biology 1 : 129-142 https://doi.org/10.1111/j.1365-2486.1995.tb00013.x
  3. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and applicable to acrylamide gels, Anal. Bio­chem. 44 : 276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  4. Bergmeyer, N., 1970. Methoden der enzymatischen Analyse. Vol. 1. Akademie Verlag. Berlin. pp. 636-647
  5. Booker, F. L. 2000. Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant Cell and Environment 23 : 573-583 https://doi.org/10.1046/j.1365-3040.2000.00576.x
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quari­titation of microgram quantities of protein utilizing the principie of protein-dye binding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Braun, S., U. Zugmaier, V. Thomas, and W. Fluckiger. 2004. Car­bohydrate concentrations in different plant parts of young beech and spruce along an ozone pollution gradient. Atmospheric Environment 38: 2399-2407 https://doi.org/10.1016/j.atmosenv.2003.12.037
  8. Calatayud, A., D. J. Iglesias, M. Talon, and E. Barreno. 2003. Effects of 2-month ozone exposure in spinach leaves on photo­synthesis, antioxidant systems and lipid peroxidation. Plant Physiol. Biochem. 41 : 839-845 https://doi.org/10.1016/S0981-9428(03)00123-2
  9. Elvira, S., R. Alonso, F. Castillo, and B. Gimeno. 1998. On the response of pigment and antioxidants of Pinus halepensis seed­lings to Mediterranean climatic factors and long-term ozone exposure. New Phytologist 138: 419-432 https://doi.org/10.1046/j.1469-8137.1998.00136.x
  10. Farage, R. K., S. Y. Long, E. Lechner, and N. R. Baker. 1991. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol­ogy 95 : 529-535 https://doi.org/10.1104/pp.95.2.529
  11. Fialho, R. C. and J. Bucker. 1996. Changes in levels of foliar car­bohydrates and myoinositol before premature leaf senescence of Populus nigra induced by a mixture of $O_{3}$ and $SO_{2}$. Cana­dian Journal of Botany 74: 965-970 https://doi.org/10.1139/b96-120
  12. Fuhrer, J., B. Lehnherr, P. B. Moeri, W. Tschannen, and H. Shariat­madari. 1990. Effects of ozone on the grain composition of spring wheat grown in open-top field chambers. Environ. Pol­lut. 65: 181-192 https://doi.org/10.1016/0269-7491(90)90183-D
  13. Grulke, N. E., H. K, Preisler, C. Rose, J. Kirsch, and L. Balduman. 2002. $O_{3}$ uptake and drought stress effects on carbon acquisi­tion of ponderosa pine in natural stands. New Phytologist 154 : 621-631 https://doi.org/10.1046/j.1469-8137.2002.00403.x
  14. Hippeli, S. and E. Elstner. 1996. Mechanisms of oxygen activia­tion during pnat stress: Biochemical effects of air pollutants. J. Plant Physiol. 148: 249-257 https://doi.org/10.1016/S0176-1617(96)80250-1
  15. Hikosaka, K. and I. Terashima. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ. 18 : 605-618 https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  16. Jeffrey, S. W. and G. F. Humphrey. 1975. New spectrophotometric equations determining chlorophylls a ,b ,$c_{1}$ and $c_{2}$ in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen 167: 191-194 https://doi.org/10.1016/S0015-3796(17)30778-3
  17. Kangasjarvi J., J. Talvinen, M. Utriainen, and R. Karjalainen. Plant defence systems induced by ozone. Plant Cell Environ. 17 : 783-794
  18. Karlsson, G. P., G. Sellden, L. Skarby, and H. Pleijel. 1995. A white clover system to extimate effects of tropospheric ozone on plants. J. Environ. Qual. 23 : 613-621 https://doi.org/10.2134/jeq1994.00472425002300030030x
  19. Mikkelsen, T. N., B. Dodell, and C. Lutz. 1995. Changes in pig­ment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone. Environmental Pollution 87: 197-205 https://doi.org/10.1016/0269-7491(94)P2607-B
  20. Miller, J. E., S. F. Vozzo, R. P. Patterson, W. A. Pursley, and A. S. Heagle. 1995. Effects of ozone and water deficit on field­grown soybean: II. Leaflet nonstructural carbohydrates. Journal of Environmental Quality 24, 670-677 https://doi.org/10.2134/jeq1995.00472425002400040018x
  21. Pell, E. J. and N. S. Pearson. 1983. Ozone induced reduction in quantity of rebulose-1,5-bisphosphate carboxylase in alfalfa foliage. Plant Physiology 73 : 185-187 https://doi.org/10.1104/pp.73.1.185
  22. Pell, E. J., P. J. Temple, A. L. Friend, H. A. Mooney, and W. E. Winner. 1994. Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments. Journal of Environmental Quality 23 : 429-436 https://doi.org/10.2134/jeq1994.00472425002300030005x
  23. Pitcher, L. H. and B. A. Zilinskas. 1996. Overexpression of Cu-Zn superoxide dismutase in the cytosol of transgenic tobacco con­fers partial resistance to ozone-induced foliar necrosis. Plant Physiol. 110 : 583-588 https://doi.org/10.1104/pp.110.2.583
  24. Putter, J. 1974. Peroxidases. In ; H. U. Bergmeyer (Ed.). Methods of enzymatic analysis. Vol. 2. Academic Press. NY. pp. 685-­690
  25. Ranieri, A., G. D'Urso, C. Nali, G. Lorenzini, and G. F. Soldatini. 1996. Ozone stimulates apoplastic system in pumkin leaves. Physiol. Plant. 97: 381-387 https://doi.org/10.1034/j.1399-3054.1996.970224.x
  26. Roe, J. H., 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. J. BioI. Chem. 212: 335-343
  27. Senser, M., M. Kloos, and C. Lutz. 1990. Influence of soil sub­strate and ozone plus acid mist on the pigment content and composition of needles from young Norway spruce trees, Envi­ron. Pollut. 64 : 295-312 https://doi.org/10.1016/0269-7491(90)90052-E
  28. Skarby, L., H. Ro-Poulsen, F. A. M. Wellburn, and L. J. Sheppard. 1998. Impacts of ozone on forests: A European perspective. New Phytologist 139 : 109-122 https://doi.org/10.1046/j.1469-8137.1998.00184.x
  29. Strickland, J. D. H. and T. R. Parsons, 1972. Practical Handbook of Seawater Analysis, 2nd Edition, Fisheries Research Board of Canada, Ottawa
  30. Tingey, D. T., K. D. Rodecap, E. H. Lee, T. J. Moser, and W. E. Hogsett. 1986. Ozone alters the concentrations of nutrients in bean tissue. Angew. Bot. 60 : 481-493
  31. Utriainen, J. and T. Holopainen. 2001a. Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings. Tree Physiology 21 : 447-456 https://doi.org/10.1093/treephys/21.7.447
  32. Utriainen, J., S. Janhunen, H. S. Helmisaari, and T. Holopainen. 2001. Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to ele­vated $CO_{2}$ and $O_{3}$ concentrations. Trees 14: 475-484 https://doi.org/10.1007/s004680000062
  33. Willenbrink, J. and T. Schatten. 1993. $CO_{2}$-Fixierung und Assimi­latverteilung in Fichten unter Langzeitbegasung mit Ozone [$CO_{2}$-fixation and assimilate distribution in spruce under long­term fumigation with ozone]. Forstwissenschaftliches Central­blatt 112 : 50-56 https://doi.org/10.1007/BF02742130
  34. Van Camp, W., M. Van Montagu, and D. Inze. 1998. $H_{2}O_{2}$ and NO: redox signals in disease resistance, Trends Plant Sci. 3 : 330-334 https://doi.org/10.1016/S1360-1385(98)01297-7