DOI QR코드

DOI QR Code

축하중 단말뚝구조물의 RSM기반 확률론적 신뢰성해석

RSM-based Probabilistic Reliability Analysis of Axial Single Pile Structure

  • 허정원 (전남대학교 해양공학) ;
  • 곽기석 (한국건설기술연구원 국토지반연구부)
  • 발행 : 2006.06.01

초록

말뚝-지반의 상호거동과 다양한 설계변수들의 불확실성을 고려한 축하중을 받는 단말뚝의 위험도를 정량화하기 위하여 효율적이고 정확한 복합 신뢰성해석 기법이 본 논문에서 제안되었다. 제안된 신뢰성해석 기법은 응답면기법, 유한차분법, 일차신뢰도법과 반복 선형보간기법의 개념들을 지능적으로 결합하였다. 단말뚝-지반계의 확정적 해석을 위해서 하중전이법과 유한차분법을 통합하였다. 하중조건, 말뚝의 재료와 단면특성, 그리고 지반특성과 관련된 불확실성을 명확하게 고려하였다. 말뚝과 지반의 사용성 한계상태 및 강도 한계상태에 대한 위험도를 평가하였다. 축하중을 받는 사실적인 말뚝-지반계의 안전성평가에 대한 제안기법의 적용성, 정확성 및 효율성을 몬테카를로 시뮬레이션의 결과와 비교함으로써 검증하였다.

An efficient and accurate hybrid reliability analysis method is proposed in this paper to quantify the risk of an axially loaded single pile considering pile-soil interaction behavior and uncertainties in various design variables. The proposed method intelligently integrates the concepts of the response surface method, the finite difference method, the first-order reliability method, and the iterative linear interpolation scheme. The load transfer method is incorporated into the finite difference method for the deterministic analysis of a single pile-soil system. The uncertainties associated with load conditions, material and section properties of a pile and soil properties are explicitly considered. The risk corresponding to both serviceability limit state and strength limit state of the pile and soil is estimated. Applicability, accuracy and efficiency of the proposed method in the safety assessment of a realistic pile-soil system subjected to axial loads are verified by comparing it with the results of the Monte Carlo simulation technique.

키워드

참고문헌

  1. 이인모, 조국환, 이정학 (1995), '신뢰도에 근거한 말뚝의 지지력 평가', 한국지반공학회지, 제11권, 제1호, pp.9-21
  2. 정상섬, 원진오, 허정원 (2001), '말뚝-캡 강성을 고려한 군말뚝 기초의 해석', 한국지반공학회 2001년 봄 학술발표회논문집, pp.363-370
  3. 한국지반공학회 (2002), 지반공학 시리즈 4; 깊은기초, 구미서관, pp.443-452
  4. American Petroleum Institute (1993), API Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-working Stress Design, Report RP-2A
  5. Barakat, S. A., Malkawi, A. I. H., and Tahat, R. H. (1999), 'Reliability-based optimization of laterally loaded piles', Structural Safety, Vol.2l, pp.45-64 https://doi.org/10.1016/S0167-4730(99)00004-1
  6. Becker, D.E. (1996), 'Limit state design for foundations. Part I. An overview of the foundation design process', Canadian Geo-technical Journal, Vol.33, No.6, pp.956-983 https://doi.org/10.1139/t96-124
  7. Bogard, D., and Matlock, H. (1980), Simplified Calculation of p-y Curve for Laterally Loaded Piles in Sand, In House Report, The Earth Technology Corporation
  8. Bucher, C. G., and Bourgund, U. (1990), 'A fast and efficient response surface approach for structural reliability problems', Structural Safety, Vol.7, pp.57-66 https://doi.org/10.1016/0167-4730(90)90012-E
  9. Eloseily, K. (1998), Reliability Assessment for Pile Groups under Lateral Loads, Thesis submitted for partial fulfillment of Ph.D. degree, University of Maryland College Park, Maryland, U.S.A
  10. Haldar, A., and Mahadevan, S. (2000), Probability, Reliability and Statistical Methods in Engineering Design, John Wiley and Sons, New York, N.Y
  11. Huh, J., and Haldar, A. (2001), 'Stochastic Finite-Element-Based Seismic Risk of Nonlinear Structures', Journal of Structural Engineering, ASCE, Vol,127, No.3, pp.323-329 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(323)
  12. Huh, J., and Haldar, A. (2002), 'Seismic reliability on non-linear frames with PR connections using systematic RSM', Probabilistic Engineering Mechanics, Vo1.17, No.2, pp.177-190 https://doi.org/10.1016/S0266-8920(02)00002-4
  13. Kraft, L. M., Ray, R. P., and Kagawa, T. (1981), 'Theoretical t-z Curves', Proceedings paper 16653, Journal Geotechnical Engineering Division, ASCE, Vo1.107, No.GT11
  14. Khuri, A. I., and Cornell, J. A. (1996), Response Surfaces Designs and Analyses, Marcel Dekker, New York, N.Y
  15. Matlock, H., Borgard, D., and Lam, I. P. (1981), BMCOL76: A Computer Program for the Analysis of Beam-Columns under Static Axial and Lateral Loading, Ertec, Inc
  16. Mosher, R. L. (1984), Load Transfer Criteria for Numerical Analysis of Axially Loaded Piles in Sand; Part 1: Load Transfer Criteria, Technical Report K-84-1, USACE, Vicksburg, Miss
  17. Phoon, K. K., and Kulhawy, F. H. (1999), 'Characterization of Geotechnical Variability', Canadian Geotechnical Journal, Vo1.36, pp.612-624 https://doi.org/10.1139/cgj-36-4-612
  18. Rackwitz, R., and Fiessler, B. (1978), 'Structural Reliability Under Combined Random Load Sequences', Journal of Computers and Structures, Vo1.9, pp.489-494 https://doi.org/10.1016/0045-7949(78)90046-9
  19. Reese, L. C., and Welch, R. C. (1975), 'Lateral Loading of Deep Foundation in Stiff Clay', Journal Geotechnical Engineering Division, ASCE, Vo1.101, No.GT7, pp.633-649
  20. Sparks, A. E., and Rollins, K.M. (1997), Passive Resistance and Lateral Lo'ad Capacity of a Full-Scale Fixed-Head Pile Group in Clay, Civil Engineering Dept. Research Report CEG. 97-04, Brigham Young University, Provo, Utah
  21. Tandjiria, V., Teh, C. I., and Low, B. K. (2000), 'Reliability analysis of laterally loaded piles using response surface methods', Structural Safety, Vol.22, pp.223-355
  22. Touma, F. T., and L. C. Reese (1974), 'Behavior of Bored Piles in Sand', Journal of Geotechnical Engineering Division, ASCE, Vol.100, No.GT7, pp.749-761
  23. Vanmarcke, E. H. (1977), 'Probabilistic modeling of soil profiles', Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.GT11, pp.1227-1246
  24. Vijayvergiya, V. N. (1977), 'Load-Movement Characteristics of Piles', 4th Symposium of Waterways, Port, Coastal and Ocean Division, ASCE, Long Beach, California, Vol.2, pp.561-584
  25. Yoon, G.L., and O'Neill, M.W. (1997), 'Resistance factors for single driven piles from experiments', Research Record 1569, Transportation Research Board, Washington, pp.47-54