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Volume Modeling of Scattered Data based on Weighted Alpha Shapes
Jungmin Paik” - Kun Lee"

ABSTRACT

This paper describes a method to achieve different level of detail for the given volumetric data by assigning weight for the given data
points. The relation between wavelet transformation and alpha shape was investigated to define the different level of resolution. Scattered
data are defined as a collection of data that have little specified connectivity between data points. The quality of interpolant in volumetric
trivariate space depends not only on the distribution of the data points in R?, but also on the data value (intensity). We can improve the
quality of an approximation by using wavelet coefficient as weight for the corresponding data points.
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temperature readings taken at various locations in a room

Visualization and computer modeling enable us to cre—
ate a mathematical model of a phenomenon that can be
displayed using dynamic computer graphics. The resulting
visualization yields new insights for us, and these new
ways of looking at the phenomenon permit us to find
trends hidden in the original data[l). Visualization implies
creating a pictorial form for data. The geometry compos-
ing such a picture can be classified by its dimensionality.
To visualize the given data appropriately, its character-
istics should be understood. Volumetric data occurs in
many areas of science and engineering. For example,
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or density measurements from interior of an object are
considered.

Scattered data modeling is concerned with the approx-
imation of mathematical objects by using samples taken
at an unorganized set of discrete points, a scattered tri-
variate data points. Many different phenomena in natural
sciences and engineering exhibit multiple levels of details.
Among the wide range of examples are transport proc—
esses in fluid flow, where finer details of free turbulences
may be due to irregular vortex motions or the evolution
of shock fronts. To represent the mathematical model at
the relevant range of scales, multiresolution methods are
requiredf2, 3].

Effective multiresolution methods are essentially con-
cerned with balancing the two conflicting requirements of
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low data size and high fidelity, where the goal is to keep
the required computational costs at a given model reso—
lution as small as possible. Therefore, multiscale modeling
is usually concerned with information reduction, model
simplification, and data compression. One of good example
of multiresolution application area is visualization of med-
ical images.. Specially, visualization of ROI(region of in-
terest) requires high resolution compared to other regions.

From the mathematical point of view, multiresolution
modeling relies on multirsolution analysis, which includes
the theory of wavelets. Another way to generate multi-
resolution models is through subdivision. There are basi-
cally two different concepts for designing multiresolution
methods in scattered data modeling. Firstly, the hier-
achical decomposition of the model into several levels of
detail leads to multilevel methods. Secondly, a different
approach for designing multiresolution methods is given
by one-level modeling concepts. The weighted alpha
shapes method lead us to achieve multiresolution repre—
sentation, also. The weights were computed based on
Euclidean distance in Edelsbrunner’s paper [10]. But, his
method is not practical in case of large volumetric data
due to expensive computation of distance. In this paper,
wavelets are used to achieve multilevel representation.
The weighted alpha shapes method is applied based on
wavelet coefficients.

The quality of a piecewise linear interpolation in space
depends not only on the distribution of the data points in
R3, but also on the data values. The a-shapes consider
the positional information only, we would like to use in-
tensity information also. Wavelet transformation allows a
function to be described in terms of a coarse overall
shape, plus details that range from broad to narrow. We
treat a volume as the coefficients corresponding to a
three-dimensional piecewise—constant basis and wave-
let-transform them. Wavelet transformation allow us to
rank the given data points in terms of importance. We
assign the weight for each data point based on wavelet
coefficients. We provide a method to visualize the volu-
metric scattered data points in the desired level of detail.

2. Problem Description

The common problem of volumetric data is that the
amount of data is too much. It is important to manipulate
a largé number of data efficiently. If we can select only
important data among a large data sets, the speed of
processing and the efficiency of data communication can
be significantly improved. We have to deal with two con-

flicting requirements of low data size and high fidelity,
where the goal is to keep the required computational
costs at a given model resolution as small as possible.
Multiresolution can be one of solution for low data size
and high fidelity. Wavelet transformation can be appli—
cable to provide the tool of multi-resolution, so user can
see the region of interest, efficiently.

If we select only the important data to reduce the
amount of data, it is no more rectilinear data. The se-
lected data is more scattered (random, unstructured) data
rather than regular data. Volumetric scattered data is
volumetric data that has not been sampled on a cuberiile
grid. The data may have been sampled in some random
manner. Scattered data interpolation from R® - R con-

sists of constructing a function f = (x, y,z) such that
fGoynz)=F, i =1, N where V={, = (x,,,,2,) e ®°,
i=L.N } is a set of distinct and non-coplanar data
points and F = (Fyeeeeenn. ,Fy) is a real data vector as

shown in (Figure 1). Fi is a function value at X5 Y;, and
Z;.

In order to visualize the collection of data that have
little specified connectivity among data points, numerical
techniques are utilized to model the data[4].

One possible way of interpolating volumetric scattered
data is a piecewise linear interpolation. The quality of a
piecewise linear interpolation over tetrahedral domain de-
pends on the specific tetrahedrization of the data points.
Therefore, one main task is to provide the best 3-D do-
main consisting of tetrahedral[5]. The quality of a piece-
wise linear interpolation in space can be improved by
considering not only positional information, but also in-
tensity gray values for the given volumetric scattered da-
ta points.

(Figure 1) Volumetric scattered data



3. Wavelet Transformation

It is common to visualize volumetric data by selecting
the important data points among the all volumetric data
points in the web based visualization. In this case, the
uniform point sets become the non-uniform sets.
Wavelets are mathematical tool for hierarchically decom-
posing functions[6, 7]. They allow a function to be de-
scribed in terms of a coarse overall shape, plus details
that range from broad to narrow. We select the important
data by wavelet transform. In the process, we can obtain
the weight factor for weighted a-shapes.

We treat a volume as the coefficients corresponding to
a three-dimensional piecewise-constant basis and wave-
let-transform them. Then, we omit small coefficients un-
der an allowable error. The volume is represented by the
remained coefficients. This means that we can express an
original set of data using smaller set of data. This makes
us find the important data points among all data points.

Our approach consists of two stages. The first stage
makes use of wavelet based image compression that is
extended in three dimensions. The second stage makes
use of the difference of gray value of two-neighbor posi-
tion in X, y, z direction. In common image compression,
an original volume data f(x) are represented as a
weighted sum of basis functions vi(x)..v,(x),

fx= Z} ev;(x) 31
The coefficient ¢s..¢, is an original volumetric data

set. The original volume data f(x) can be approximated

with fewer coefficients using different basis as follows.

¢;9:(x)

1= 2 (32

'Ms.

i

If # is smaller than m and "f - f (")" is smaller than
error tolerance(e), we can find a set of basis function that
approximates the original volume data with few coefficients.
A user specifies the error tolerance(e). The square of the
I* norm error is given by following equations,

lre -7l = Feeaor .

In equation (3.3), #(i)is a permutation of i 12.m. The
algorithm of weight assignment for volumetric scattered

data can be described as follows.

1. Compute wavelet coefficient representing a volu-

JEEA €1t HOIZE VIgHeZ ot

MEE AEO 25 ZEY 269

fr

metric in three-dimensional wavelet basis.
2. Sort the coefficients in order of decreasing magnitude.
3. Find the smallest wavelet coefficient 7 for which

N 2 2
Z (C,y) <€

2,
s where & is an allow-

satisfies

able L? error.

4. Replace original coefficient as zero for all of smaller
wavelet coefficients than .

5. Reconstruct volumetric scattered data based on us-
ing new coefficients of step 4.

6. Calculate the difference of gray value from 6-degree
(front, back, left, right, top and bottom) based on
reconstructed data of step 5 in L* norm manner.

7. Assign weights for each data point according to the
calculated values in step 6.

4. Weighted Alpha Shapes

4.1 Alpha shapes
The a-shapes of finite point set are a polytope that is
uniquely determined by the set and a real number a.

Definition 1 :Let a be a sufficiently small but other—
wise arbitrary positive real. The a-hull of S is the inter-
section of all closed discs with radius 1/a that contain all
the points.

Definition 2 : For arbitrary negative reals a, the a-hull
is defined as the intersection of all closed complements of
discs (where these discs have radii - 1/a) that contain
all the points of S.

If we define a generalized disc of radius 1/a as a disc
of radius 1/a if a>0, the complement of a disc of radius
- 1/a if a < 0, and a half plane if a=0, then definition 1
and 2 could be combined as follows: for an arbitrary real
a and a set S of points in the plane, the a-hull of S is
the intersection of all closed generalized discs of radius 1/
o that contain all the points of S. In (Figure 2), the re-
sults of a-shapes, which have negative value of a. In
(Figure 3), two pictures are the results of a-shapes,
which have positive value of a. The value of a is in-
creased from top to bottom [8, 9l.

Alpha shapes provide a mathematical framework to
make the geometric shape of a set of points in
three-dimensions. However, a-shapes give good results
for point sets of roughly uniform density, it does not give
for non—uniform point sets. In order to be effective in
non-uniform point sets, it needs to change the value of
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(Figure 2) a - shapes of negative a for a increasing from
fop to bottom

(Figure 3) a-shapes of positive a for a increasing from top
to bottom

alpha(radius of sphere) locally depending on the intensity of
a point set.

It is a polytope in a fairly general sense:it can be
concave and even disconnected; it can contain two-di-
mensional patches of triangles and one-dimensional
strings of edges; and its components can be as small as
single points. The parameter a controls the maximum
curvature of’ any cavity of the polytope.

4.2 Weighted alpha shapes
The weighted a shapes method is defined for a finite
set of weighted points. Let § € R xR be such a set. A

weighted point is denoted as p:(P',C’)), with p'e R? its
location and w e R its weight. For a weighted point p

and a real a define P.. =(P"0)+0‘). So p and Pia
share the same location and their weights differ by a. In
other words, it is a polytope uniquely determined by the
points, their weights, and a parameter ¢ € R that con-
trols the desired level of detail.

Given a finite set of points, each with a real weight,
the regular triangulation is a unique simplicial complex
whose underlying space is the convex hull of the point
set. If all weights are the same then it equals the
Delaunay triangulation of the points.

In reconstruction an interpolant from volumetric scat-
tered from point data it is rarely the case that the points
are uniformly dense every in 3-D space. Indeed, the den-
sity often varies with the curvature. If a is chosen so
that the a-shape produces a piecewise linear surface in
sparse regions, it would not be represented in detail in
denser regions. Conversely, if a is chosen so that dense
regions are nicely modeled then the a-shape will get
holes and disconnected in sparse regions. The assignment

of large weight in sparse region and of small weights in
dense regions can be used to take care of this un-
desirable effect [10].

The previous weighted a-shapes consider about posi-
tional information, only. In other words, the weight fore
each data point is based on Euclidian distance. The qual-
ity of interplant in volumetric trivariate space depends not
only on the distribution of the data points in %3, but al-
so on the data value (intensity). Wavelet coefficients can
provide the description in terms of a coarse overall shape,
plus details that range from broad to narrow with an ap-
proximation coefficients and detail coefficients, respectively.
The intensity values of points in sparse region may be
more distinctive than the intensity values of points in
dense region. We can improve the quality of an approx-
imation by using wavelet coefficient as weight for each
point. Intuitively, a large weight favors and a small
weight discourages connections to neighboring points.

Let explain algorithm with a simple example. In reso—
lution 4, original data has 4 pixels. And those intensities
are 9,73 and 5 as shown in <Table 1>.

(Table 1> Wavelet Coefficients Volumetric Scattered Data

Resolution Average Detail Coefficient
4 [9,7,351
2 [84] (1,-1]
1 [6] {21

We can obtain coefficients of Haar basis function. If
we remove [-1] only, then original data is changed as
[9,744]. ¥ we remove [1,-1]. Then, original data is
changed as [8844]. Now, many pixels may have the
same value such as [88] or [44]. In this case, we select
the data points, which have more different gray value
from the adjacent data points. In this case, the second
and third data points have more deferent gray values.
Next, we calculate the difference of gray value from right
and left for the first 8 The first 8 has 0, and the second
8 has 4. In this case, we assign weight to the first 8 as
0.0, and to the second 8 as 2.0 (40 divided by 2). In the
same manner, the first 4 has 4, and the second 4 has 0.
So, we assign weight to the first 4 as 2.0 (40 divided by
2) and to the second 4 as 0.0. In three-dimensional case,
we calculate the difference of gray value from 6 direc—
tions (i.e. front, back, left, right, top, and bottom) for the
current pixel in an averaged I’ norm manner (e

top  frontright
2L
bottom back left )

6



If all weights are zero, then it will coincide with the
unweighted a- shapes. The polytope is not necessarily
connected and it is not necessarily the same as the closure
of its interior. To explain the idea of weighted a-shapes,
we illustrate the 2-D version of weighted a-shapes in
(Figure 4). The shape of a finite set of weighted points is
defined in terms of a decomposition of the union of corre—
sponding balls into convex sets. This decomposition is de-
fined by the (weighted) Voronoi cells of the balls. The
shaded triangles are the dual complex of the collection of
weighted points, which is the result of a-shapes with a
certain parameter a on the weighted Voronoi diagram.

The result of weighted a-shapes does not necessary to
connect all the given points. If we think in terms of spheres
for 3-D extension, we may think of radii, which are a+w,
where a is the parameter of a-shapes and o is the weight
of data point. Therefore, a sphere possibly may have un—
equal radii according to weight of each point ; [11-13]

(Figure 4) Weight a-shapes

Two ways of assigning weight are considered as fol-

lows:

1. min-max : calculated the minimum and maximum val-
ue of the difference of gray value among all the given
data points in L; norm manner and linear interpolate
for current data point in the range from 0 to a.

LZ(I') - L

2 min

2max —LZmin (41)

a)i:a*
L

2. barycentric weighting : calculate the sum of all the
difference of gray value for each data point in L;
norm manner and take a portion of a according to
the current data point with respect to the sum of all

" the difference of gray value.

Ly

W, =a *—N—-—
; Ly @2)

5. Visualization

The results of volumetric scattered data interpolation
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are visualized by using OPENGL in Visual C++ develop-
ing environment. Alpha shapes are generated by using
CGAL (Computational Geometry Algorithms Library). a is
a parameter 0 <a<oo, For a=c0, the a-shape is the con-
vex hull of a point set. As a decreases, the a-shape
shrinks and develops cavities, as soon as a sphere of ra-
dius can be put inside.

5.1 Various common factors

This original volumetric skull data size is 262144
(64+64+64 = 262144). Data reduction is achieved by using
wavelet transformation. Data reduction rate is 15956/
262144 =6.07 %. Threshold value is 50 in the range from
0 to 255 as shown in (Figure 5). Marching Cube algo-
rithm needs all of data points. But, alpha shapes algo-
rithm needs 6.07 % only.

(Figure 5) Original Image

Common factor method means we assign the same
weight for each data points. As a decreases, the a—shapes
method shrinks and develops cavities. As a increases, a
-shapes method expands and develops convex hull.
Common factor 0, and 10 are applied as shown in (Figure
6), and (Figure 7), respectively.

Alpha=30
(Figure 6) Common factor 0

Alpha =50
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Alpha=10

Alpha=30 Alpha=50
(Figure 7) Common factor 10

52 Weighted a-shapes based on Min-Max

The weight for data point is assigned based on the
minimum and maximum value of the difference of gray
value among all the given data points in L2 norm manner
and linearly interpolate for current data point in the range
from 0 to a. The results are shown in (Figure 8).

Alpha=10

Alpha=30
(Figure 8) Weighted a-shapes based on Min-Max

Alpha=50

5.3 Based on Barycentric-weighting

The weight for data point is assigned based on the
portion of a according to the current data point with re—
spect to the sum of all the difference of intensity value.
The results are shown in (Figure 9).

Alpha=10 Alpha=20

Alpha=30
(Figure 9) Weighted a-shapes based on Barycentric-weighting

Alpha =50

5.4 Comparison of results

We have a chance- to compare the results between
weighted alpha shapes based on Min-Max and based on
Barycentric Weighting. As shown in (Figure 10), and
(Figure 11). The left image is generated by un-weighted
alpha shapes. The right image is generated by weighted
alpha shapes based on barycentric weighting method. In
the left image, we can find hole (cavity). In the right im-
age, the hole is filled. Therefore, It is possible that the
problem of un-weighted (common weighted) alpha shapes
can be improved by using weighted alpha shapes
techniques.

If alpha chosen so that the alpha shapes produce a
piecewise linear surface in less distinctive regions, it will
be clumsy and hide details in more distinctive regions.
Conversely, if alpha is chosen so that more distinctive
regions are nicely modeled then the alpha-shape will get
holes and break apart in less distinctive regions. The as-
signment of large weights in more distinctive regions and
of small weights in less distinctive regions can be used
to take care of this undesirable effect as shown in
(Figure 10) and (Figure 11).

(Figure 10) a-shape common weight =0, a=10 on the left
image and weighted a-shape based on barycentric
weighting, a=10 on the right image.



(Figure 11) a-shape common weight =0, a=10 on the left
image and weighted a-shape based on barycentric
weighting, a=10 on the right image by using
GEMVIEW visualization package.

6. Conclusions

This paper describes a method to achieve different lev-
el of detail for the given volumetric data by assigning
weight to points. The relation between wavelet trans—
formation and alpha shapes method was used to define
the different level of resolution. Wavelets are mathemat-
ical tool for hierarchically decomposing functions. They
allow a function to be described in terms of a coarse
overall shape, plus details that range from broad to
narrow. In other words, wavelets provide a method for
representing the level of detail. We apply this feature for
describing the ranking of importance for each data points.
We treat a volumetric scattered data as the coefficients
corresponding to a three-dimensional piecewise constant
basis functions of wavelet transformation.

The quality of interpolant in volumetric trivariate space
depends not only on the distribution of the data points in
R3, but also on the data value (intensity). The a - shape
considers the positional information, only. Wavelet trans-
formation deals with intensity value of data points. The
connection between wavelet and alpha shape was studied
for visualizing volumetric scattered data points.

We assign weight value for each data point by using
wavelet coefficient. The given volumetric scattered data
points, each with a real weight, is triangulated by using
the concept of weighted alpha shapes In constructing an
interpolant from scattered data points, it is the case that
the points may be irregularly dense everywhere on the
interpolant. We assign relatively large weights for im-
portant points and small weights for less important points
based on wavelet coefficient, respectively. The intensity
values of points in sparse region may be more distinctive
than the intensity values of points in dense region. Points
which have distinctive intensity value around a neighbor-
hood may counted as more important points than less
distinctive points based on wavelet coefficients. This
scheme can be useful to achieve a high quality volumetric

A L0 AI0IZE 7Igtez ot MEE KRS =25 ZRHE 273

scattered data interpolation.

For further research, relationship between positional in—
formation and intensity value need to be investigated.
Also, formalization of relationship between parameter a
for a-shapes and weight value © based on wavelet co-
efficient is pretty much challenging task for feature
research. We assume that one level of a can be max-
imally weighted by a. So the maximum radius of a level
a can be increase by twice ( ie. a+a=2a).
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