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NON-TRIVIALITY OF TWO
HOMOTOPY ELEMENTS IN =,S

Xi1vagul Liv

ABSTRACT. Let A be the mod p Steenrod algebra for p an arbitrary
odd prime and S the sphere spectrum localized at p. In this paper,
some useful propositions about the May spectral sequence are first
given, and then, two new nontrivial homotopy elements «j5€, (p >
5,n > 3) and ysa15€n (p 2 7, n > 4) are detected in the stable
homotopy groups of spheres, where &, € mpngtpq—2M is obtained
in [2]. The new ones are of degree 2(p — 1)(p" +p+ 1) — 4 and
2(p — 1)(p™ + sp® + sp+ (s — 1)) — 7 and are represented up to
nonzero scalar by bohohn, bohohnys # 0 € Ext}”(Zp, Zp) in the
Adams spectral sequence respectively, where 3 < s < p — 2.

1. Introduction and statement of the main results

Let A be the mod p Steenrod algebra and S be the sphere spectrum
localized at an arbitrary odd prime p. To determine the stable homotopy
groups of spheres 7,S is one of the central problems in homotopy theory.
One of the main tools to reach it is the Adams spectral sequence E, =
Exti’t(Zp, Zp) = my—sS, where the Eé’t-term is the cohomology of A.

If a family of homotopy generators z; in E5™ converges nontrivially in
the Adams spectral sequence, then we get a family of homotopy elements
fi in TS and we say that f; is represented by z; € E5* and has filtration
s in the ASS. So far, not so many families of homotopy elements in 7, S
have been detected. Recently, Lin got a series of results and detected
some new families in 7,S.
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We set g =2(p — 1).

In {2}, Lin detected a new family of filtration 3 in the stable homotopy
groups of spheres. Lin’s family is constructed using the Cohen family ¢,
and he obtained the following theorem.

THEOREM 1.1. Let p > 5 and n > 3. Then

(1) ix(h1hy) € Ext3P"TTPU H* M, Z,) is a permanent cycle in the
Adams spectral sequence and converges to a nontrivial element
§n € Mpng+pg—2M.

(2) For &, € mpngipg—2M obtained in (1), j&n € Tpngypq—3S is a non-
trivial element of order p which is represented (up to nonzero
scalar) by (bohn + hibn_1) € Ext3P 77%9(Z, Z,) in the Adams
spectral sequence.

In [4], Lin and Zheng obtained the following theorem and detected a
new family of filtration 7 in the stable homotopy groups of spheres.

THEOREM 1.2. Let p > 7, n > 4. Then the product

7 2
bn-19073 #0 € Extﬁ” a3l +p+1)q(Zp, Zp)

and it converges in the Adams spectral sequence to a nontrivial element
in Tpng43(p24p+1)g—75 Of order p.

Lin [3] detected a new family in .S of filtration 6 in the stable
homotopy groups of spheres and proved the following theorem.

THEOREM 1.3. Let p > 7, n > 4. Then the product

n 2
hngods # 0 € Ext?q’p q+3(p +p+1)q(Zp, Zp)

and it converges in the Adams spectral sequence to a nontrivial element
in Tpngy3(p24p+1)g—6° Of order p.

In this paper, we will use Lin’s results in [2] to detect two new families
of filtration 4 and s + 4 in the stable homotopy groups of spheres. Our
main results can be stated as follows.

THEOREM 1.4. Let p > 5, n > 3. Then the product
bohohy, # 0 € ExtyP P (7, 7,)

is a permanent cycle in the Adams spectral sequence and converges to
a nontrivial element o1&, € Tpngtpgrq—aS.

THEOREM 1.5. Let p > 7, n > 4 and 3 < s < p— 2. Then the
product

n 2 — _
bohohn;)'/s 7é O = Extf4+4yp g+sp q+qu+(s 1)(1+s 3(Zp, Zp)
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is a permanent cycle in the Adams spectral sequence and converges to
a nontrivial element ¥sa1jén € Tpngysp2q+spg+(s—1)g—75-

Our main methods are the Adams spectral sequence and the May
spectral sequence, especially the May spectral sequence.

The paper is arranged as follows: after giving some useful proposi-
tions on the May spectral sequence in Section 2, we will make use of the
May spectral sequence and the Adams spectral sequence to prove our
main theorems in Section 3.

2. Some results on the May spectral sequence

From [6], Exti{*(Zp,Zp) has Z,-bases consisting of ag € Exti{l(Zp,
Zp), hi € Exty"'%(Z,, Z,) for all i > 0 and Ext%*(Z,, Z,) has Z,-bases
consisting of ag, a2, aghi(i > 0), g;(¢ > 0), k;(i > 0), b(: > 0), and
hihj(j > i+2,i > 0) whose internal degrees are 2¢+1, 2, p'q+1,p* g+
2pq, 2p*t1q + pq, p**lq and piq + p’q respectively.

From [8], there is a May spectral sequence { Ey"**, d,.} which converges
to Ext%'(Z,, Z,) with E;-term

B} = E(hmilm > 0,1 > 0) &) P(bm,ilm > 0,i > 0)
&) P(azln > 0),

where F is the exterior algebra, P is the polynomial algebra, and

(2.1)

1,2(p™-1)pt 2m—1
By € B (P™-1p

b
2,2(p™-1)p*t1,p(2m—1)
bm’i S El ( 3

a, € Ell,Zp"—1,2n+1.

One has d, : ES™ — ESPMUT and if € ESY and y € ESP,
then dr(z - y) = dr(z) -y + (1)’ - di(y), -y = (=1)* Ty . g for
Z,Y = P i, b Or ay. The first May differential d; is given by

0<k<i

(2.2) di(a;) = Y Ri—grok,
0<h<i
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For an element z € ES"*, define dim z = s, deg # = ¢t. Then we

have:
dim hi,j = dim a; = 1, dim bi,j = 2,
deg hij = 2(p' — )p? = 2(p ~ )"~ + - +p),
deg bij = 2(p' — D! =2(p - 1)(p*H + -~ +pIH),
dega; =2p' —1=2(p - P+ +1)+1,
deg ag =1,

where ¢ > 1, 7 > 0.

PROPOSITION 2.3. Let t; = q(cpp™ + cpap™ 1+ -+ cip+cy) +e
be a positive integer with 0 < ¢; <p(0<i<n),0<e<q,ands a
positive integer with 0 < s < p. If for some j (0 < j < n), s < ¢;, then
in the May spectral sequence (see (2.1)) we have

EpBr =0.

Proof. See [5, Proposition 1.1}. a

PROPOSITION 2.4. Let ty = q(c,p" + ch—1p™ ' + -+ +c1p+ o) be a
positive integer with 0 < ¢; < ¢, <p (0 <7< n). If ¢y > 1, then in the
May spectral sequence (see (2.1)) it follows that

E]C.n1t2i* — 0.

Proof. Consider h = 2122+ - Ty € Ef”’tz’* in the May spectral se-
quence, where z; is one of ag, hyj or by, 0 <k <n+1,0<1+j5<
n+1,0<u+2<n1>037>0,u>0,2>0. Assume that
deg z; = q(cinp" + Cin—1p™ 1+ +eig)+e;, wherec;; =0or 1, e, =1
if z; = ag,, or ¢; = 0. Then

m
deg h = Zdeg Ti

=1

m m
=g(O_cin)p"+ -+ Q)
=1 i=1

+ O e+ Qo)+ (O e)
=1 =1 =1

= g(cap™ + -+ ) +0,

m
dim h = Zdim T; = Cp.

i=1
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Note that 0 < ¢; < p. Using knowledge of the p-adic expression in
number theory, we have that

r m
Sei=0+A_1q, A1 >0
i;l
Yo cio+ A1 = co+ Aop, Ao > 05
=1

m
Cin-1+ An—2 = Cne1 4+ Ap—1P, Ap—1 > 0;

=1

m
Cimn T An—1 = Cn.
—

g
Because dim h;; = dim a; = 1 and dim b;; = 2, we know that

m
O<m§cn<pfromdimh=Zdimxi=cn. Note that 0 <

=1

m m
6 <p,0< >, <m<pand Y e < m < q, we easily see that

i=1 i=1
the sequence (A_1, Ao, A1, A2, , An—2, \n—1) must equal the sequence
(0,0,0,0,---,0,0). And then we have
( m m
Z €; = 07 Z ci,O = (o,
i=1 i=1
m m
E ¢;,1 = C1, Z Ci2 = C2,
\ i=1 =1

m m
E Cin—1 = Cn-1, Z Cin = Cn.
\ i=1 i=1

Since ) e; =0, deg h;; = 0(mod ¢) ( > 0,5 > 0), deg a; = 1 (mod q)
i=1
(¢ > 0) and deg b;; = 0(mod q) (4 > 0,57 > 0), then h = z;---2,, €
E(hmilm > 0,5 > 0) Q@ p(bmilm > 0,i > 0). Meanwhile, from the
m

equality > Cin = Cpn, We have that m > ¢,. Thus m = ¢,. Note that
i=1
dim A = ¢,. Thusdim h = 1. It follows that h = z1 - - - &, € E(hm4lm >

Cn
0,4 > 0). From ) ¢;, = ¢,, we know that deg x; = p"g+lower terms,
i=1
m
1 <% < ¢y Meanwhile, since ) ¢;0 = ¢o and deg h;; = ¢ (mod pq)
i=1
(¢ > 0,5 > 0), then by the graded commutativity of E}"™" there would
be a factor hiy 0hiz0 - Rigy 0 (0 <43 <idg--+dgg < m+1)in h such
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that deg h;, o =higher terms+q (i1 < j < 4c). Note that deg hig =
p*~lg+4 .-+ pg+gq, i > 0. Thus there would be ¢ hny10’s in h with
deg hpt10 = p"¢+ -+ + pq + ¢q. Note that ¢o > 2. By (2.1), h would
equal 0. The proposition is proved. ]

3. Proofs of the main theorems

Let M be the Moore spectrum modulo a prime p > 5 given by the

cofibration . .
sE&sLMIL s
Let o : ¥9M — M be the Adams map and K be its cofibre given by the
cofibration . )
SIM S M5 KL sy,

where ¢ = 2(p — 1). This spectrum which we briefly write as K is
known to be the Toda-Smith spectrum V' (1). Let V(2) be the cofibre of
B : =tDIK . K given by the cofibration

s B, g &y (9) I, ety

Let v : SIP* 7DV (2) — V(2) be the vs-map. As we know, in the
Adams spectral sequence, for p > 7 the y-element v, = jj'j~%4’i is a
nontrivial element of order p in myy(p24p11)—g(pt+2)—35 (see [7, Theorem
2.12)).

From [5, Theorem 1.1], we have the following.

THEOREM 3.1. Let p > 7, 0 < s < p — 3. Then the element
ajhsphaihie € EiTHY*
s+3,t

converges to the third Greek letter family element ¥,.3 € Ext, " (Zp, Zp)
in the May spectral sequence, wheret = (s+3)p%q+(s+2)pg+(s+1)g+s
and 4513 converges to the y-element Ys+3 € T(s43)p2q-+(s+2)pg+(s+1)g—3°
in the Adams spectral sequence, where vsy33 = 55’77 73ii'i € m_5-3S.

LEMMA 3.2. Letp > 7, n>4,0< s < p—>5. Then in the May

n 2
spectral sequence, the group Ef+6’p TH+3P e (s+3)pat(s+2a+s* oo the

following generators:

a3hiohsoho1b2,001 4,
a3hiohsohi2h21h11hyn,
aghaohsoho1b1,1h1 .5,
a3haohsohi2b2,0h1 n,
ajhsoh2ohy2h21b1n—1.
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Proof. For convenience, we let #' = p™q + (s + 3)pq + (s + 3)pg +
(s +2)g+s. Consider h = z122-- - Ty € Es+6t * in the May spectral
sequence, where z; is one of ag, hl,] or by 2, 0 <k<n+1,0<]4+5<
n+1,0<u+2<mn1>0j>0 u>0 z2>0 Assume that
deg z; = q(ci,np"—#ci,n_lp"'l +---+cip)+e;, wherec;; =0o0rl,e; =1
if z; = ag,, or e; = 0. Then we have

m
deg h = Zdeg T;

=1
((Z Cin)p" + -+ (Z ci2)p? + (Z ci,1)p
i=1 i=1 i=1
33 (e + (3 e)
=1 =1

=q(p"+ (s+ 3’ + (s +3)p+ (s +2)) + 5,

m
dim h = Zdim T; =5 +6.
=1

Note that 0 < s,s+ 2,5+ 3 < p, so from (3.3) we have

¢ %1 e; =8+ A-1q, Ay > 0;
i=

7zn:1 Go+A1=5+2+Xp, A >0
i=

i_n:l i1+ Ao =5+ 3+ Aip, A > 0;

(3.4) ) Zg 2+ A1 =8+ 3+ Aop, A2 > 0;

f:li,3+>\2=0+)\3p, A3 > 0;
i=

ilci ne1 A2 = 0+ Aucapy Ano1 203
i=

Zczn+/\ =1

\ =

Case 1. 0<s<p-—6.
By the facts that dim h;; = dim a; = 1 and dim b;; = 2, we
mn

know that 0 < m < s+ 6 < p from dim A = >, dim z; = s +
i=1



790 Xiugui Liu

m m .
6. Note that 0 < > e;, > ¢j < m < p, it is easy to see that the
i=1 =1
sequence (A-1, Ao, A1, A2, A3, ..., An—2, \n—1) must equal the sequence
(0,0,0,0,0,...,0,0). Thus, from (3.4), we get that

( m m
> ei=s, > cio=8+2,
i=1 i=1
m m
{ Teai=s+3, 2 ciz=5+3,
i=1 i=1
m m m
Ci3=-"= Cn-1=0, > cin=1
L i=1 i=1 i=1

It is easy to see that there exists a factor hy, or by ,—1 in h. Note the
graded commutativity of E]"*"*, we can denote the factor hy ,, or b1 n—1
by zm. Then b/ = 2129 X1 € Ei’t “P"9* where l=s+5o0r s+4
and we have

m—1 m—1

> e=s, > cio=8+2,
(3.5) i )

Yoci=8+3, > ci2=s5+3.

i=1 i=1

m—1
We can get that m > s+ 4 from > ¢;; = s + 3. Meanwhile, we know

i=1
1

m—
that m < s+6,som=s+4, m=s+50rm=s+6. Since ), e; =s,

=1
deg h;; = O(mod ¢) (¢ > 0,5 > 0), deg a; = 1(mod ¢) (¢ > 0) and
deg b; ; = 0(mod g) (¢ > 0,5 > 0), then by the graded commutativity of
E7™", B must have a factor aj, a5, - a;, (0 <j1 <j2 << js) up to
sign. Note the degrees of a;’s, suppose that ' = agai’aga’gxs.,_l ce Tm—1,
where 0 < z,y,z,k <s,z+y+z+k=sandm=s+4,s+50r s+6.
From (3.5) we have

m—1 m—1
z+y+z+k+ Y e=s y+z+k+ > cio=s5+2,

m—1 m—1
z+k+ 3 ci=s+3, k+ Y co=s4+3.
i=s+1 i=s+1
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It follows that A" = zs4; -+ m_1 € EL 50 7 = (s + 3 — k)p2q + (s +
3—z—k)pg+(s+2—y—2—k)gand

m—1 m—1

2 e=0 2 Go=s+t2-y—z—k,
(3.6) i=st1 2ot

S ocii=s5+3—2-k Y ca=s+3—k

i=s+1 1=s+41

Subcase 1.1. If h = z122- - Tm—1hin, then B = aﬁaf{aga’s“xsﬂ o
I _pn 7"
Tym_1 € Ef+5,t P*0* and B = Lspl - Tme1 € Ef’t .
When m = s +4, (3.6) becomes

843 s+3
Z ei=0, E 01;,0———54-2—3/—2-—]{),
i=s+1 i=s+1
s+3 s+3
Z ci,1=s+3—z—k, Z C¢’2:S+3—k‘.
i=s+1 =541
s+3
We can get that ¥ > s+3— > c¢o > s+3—3 = s from the
i=s+1
s+3 .
equality >  c¢o = s+ 3 — k. Note that x +y + 2+ &k = s and
t=s+1

0 < z,9y,2,k < s. Thus we have that k = s,x =y = z = 0. Then
h' = a§zsp1Zs12Tsrs With B = zeyp1Zo40T543 € Eir”3p2q+3pq+2q7* =
Zp{h1,0h3ph2,1b2,0, h1,0h3,0h12h2,1h1,1, hooh3oha1b1,1, haphsghi2bap }.
Thus at this time A" = Ts112512Ts+3 cannot exist, and consequently A’
cannot exist.

When m = s + 5, (3.6) becomes

s4-4 s+4
> e =0, >oco=s+2—-y—z—k,
i=s+1 i=s+1
s+4 s+4
> o ci=s+3—-z—k > c2=s+3-k
i=s+1 i=s+1
s+4
We can get that £ > s +3— > ¢2>5s+3—-4=s—1 from the
i=s+1
s+4
equality Y c¢2=s+3—k. Notethat z+y+2+k =sand 0 <
t=s+1

z,y,2,k < s. Thus there are four possibilities that satisfy the two
conditions. If k = $=y=2z= 0, then b’ = afxst1- - T34 with h”
= Loy1 - Lapq € EYITIRIR20 _ 7 () ohaoha1boo, hiohaoha 2ha1hia,
h2,0h3’0h2,1b171, h270h370h1,2 bg’o}. Thus up to sign h' can equal a§h170h3,0
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hg,lbg,o, aghzohg,ohg,lbl,l and a§h270h3,0h172b2,0. From the facts that
2

EXWPOPOtTe* — 0 for (r,ry) = (4,3), (4,2) and (3,2), it follows

that when k =s—-1l,z=1,y=2=0k=s~1,y=1,z = 2 =0 and

k=s—1,z=1,z =y =0, A" cannot exist respectively. Consequently,

k' cannot exist.

When m = s + 6, (3.6) becomes

5+5 s+5
Z e; =0, Z Ci,0=3+2—y’2—k,
i=s+1 i=s+1
s+5 $+5
> cri=s5s+3—z—k Y cao=s+3—k
i=s+1 i=s5+1
s+5
We can get that £ > s+3— ) c2 > s+3—5=5—2 from the
i=s+1
545
equality Y ¢i2 = s+ 3 — k. Note that £ < s. Thus k£ = s — 2,
i=s+1
5+5
s—lors. Ifk=s—2, wewouldhavethat 2=5+2—-s< 3 c¢o=
1=s+1
s+5
s+2—y—z—k =4-y—2<5and ) c¢; 2 =s+3—k =>5. By Proposition
i=s+1

2.4, it follows that A" = 344y - ze4s5 € BV ITO2Pat(y=2)ax _

2
Thus when k = s — 2, h” cannot exist. Because E>4 91PUt20* —

for (r1,72) = (4,3), (4,2) and (3,2), it follows that when k =s— 1,2 =
lLLy=2=0k=s—-1ly=1lz=2=0andk=s—1,z=1,z =y =0,
k' cannot exist respectively.
If k=s2=y=2=0,then h = az:+12s+2%s+3%s+4%s+5 with
2
W' = Zgyq - Boqs € EYPPITRIRIY — 7 (1) ohsoha1ba, haohsohe
ha,1hi1, haohsohe1b1 1, hoohaohi2bao}. Thus k' can be aghiohsohi2
h2,1h1,1 up to sign.

From the above argument, we have that h = 21 - z;,—1h1 5 exists,
and up to sign h can equal aghl,oh;;’()hz,lbz,ohl,n, a§h2,0h370h2,1b1,1h1’n,
a3ha oh3ohi,2b20h1n and ajhy ghaohi2ho 1k 1hi,.

Subcase 1.2. If h = 2122+ Tm—1b1n—1, then b’ = aaladalzsiq -
4t/—- ' 4t//
Tm-1 € E;FYY PO and b = g4y Ty € BTN
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When m = s + 4, (3.6) becomes

s+3 s+3
E e; =0, 2 Ci70=S+2——y—Z—k§,
i=s+1 i=s+1
s+3 s+3
>, c1=s+3—-2—-k, Y co=s+3-k.
i=s+1 i=s+1
s+3
We can get that k > s+3— Y c¢i2 > s+ 3—3=s from the equality
i=s+1

s+3
> co2=5+3—k Notethat z+y+2+k=sand0<z,y,2,k <s.
i=s+1
Thus we have that k£ = s, = 13/ =z = 0. Then b/ = afzs1Ts42Ts43
with h” = Ts41Ts+2Ts43 € Ef"gp q+3pg+2g,% _ p{h2’0h370h1,2h2,1}. Thus
k" cannot exist, and then A’ cannot exist.
When m = s + 5, (3.6) becomes

s+4 544
Y. e =0, Y co=s8+t2—y—z—k,
i=s+1 i=s+1
s+4 s+4
Y ci1=s8+3—z—k, > ca2=s+3-k
i=s+1 i=s+1
s+4
We can get that £ > s+3— > ¢2>s8+3—-4=s—1 from the
i=s+1
s+4
equality Y ¢2=s+3—k. Notethat z+y+2+k =sand0 <
i=s+1

z,y,2,k < s. Thus there are four possibilities that satisfy the two
conditions. If ¥k = s,z = y = 2z = 0, then A’ = afzey1-- Teqa with
W =@giq1+  Tg1q € Eil’3p2q+3pq+2q’* = Zp{hophsohighe,1}. Thus up to
sign h' can equal ajhgphsohi2h2,1. By Proposition 2.4 we can get that
ELAP T () for (ry,r9) = (4,3), (4,2), (3,2). It follows that
whenk=s-l,z=1Ly=2=0k=s—-1,y=12x=2=0 and
k=s~1,z=1,z =y = 0, b cannot exist respectively, and then h’
cannot exist.

When m = s + 6, we would have that A’ = z129 - Zp,_1 = T122 -
Tstp € Ef+4’tl_pnq’*. Note that dim z; = 1 or 2. It is easy to see that
m is impossible to equal s + 6.

From the above argument, we get that h = 122 -+ Tm-1b1,n—1 can
exist, and up to sign h = ajheohs0h12h21b1n-1.

From Subcase 1.1 and Subcase 1.2, we see that when 0 < s <p—6, h
exists, and up to sign h can be a3hioh3oh2,102,0h1n, a§h1,0h3,0h1,2h2,1
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hi1 hin, aghophsohe 161,11 0, a3haoh3ohi2b20h1,n and a3haohsohi 2
h21 bin-1.

Case 2. s=p—6.

m m
Thenm < s4+6=p—-6+6=p From0 < Y e;,>.¢; <m<
i=1  4=1
p, it is*easy to see that the sequence (A_1, A\g, A1, A2, ) must equal the
m

sequence (0,0,0,0). From (3.4) we have that ) ¢;3 = A3p. Note that

i=1

m
0< > i3 <m < p. Thus we have that A3 may equal 0 or 1.
i=1

m
Subcase 2.1 If A3 =0, then ) ¢;3=0.

=1

m
When n = 4, we have that > ¢;4 = 1. From the above results, it
i=1
follows that there exist a factor hy4 or by 3 among z;’s.
When n > 4, we can similarly discuss and obtain that Ay may equal

0 or 1. We claim that A4 = 0, for otherwise, we would have that \y = 1
m

and ) c;4 = p, then m = p. For each 1 < ¢ < m, deg x; = higher

=1

P
terms +pg+lower terms. Since Y e; = p — 6, deg b;; = O(mod g¢q)
i=1
(i > 0,5 >0), deg a; = 1(mod ¢) (i > 0) and deg h;; = O(mod q)
(¢ > 0,7 > 0), then by the graded commutativity of E}""", there would
exist a factor aj aj,---aj,_¢ (0 <j; <jo < -+ < jpg <n+1) among
x;’s such that for any 1 <4 < p —6,j; > 5 and deg aj, =higher terms

m

+p*q + pPq + p*q + pg + q + 1. It is obvious that ¢;,3 > p— 6 which

=1
m
contradicts ) ¢; 3 = 0, thus the claim is proved. By induction on j we
i=1
m
canget \; =0(4<j<n—-1),50 > ¢n =1, that is to say, there is a

factor Ay, or by 1 in h. =

In all, for n > 4, there is a factor hy, or b1 ,—1 in h. Note the
graded commutativity of E{"™, we can denote the factor hy, or by ,_1
by . By an argument similar to that used in the proof in Case 1, we
can show that h exists, and up to sign h can be a§_6h1’0h370h2,1bz,ohl,n,
a§_6h1,0h3,0h1,2h2,1hl,lhl,n, a§_6h2,0h3,0h2,151,1hl,n, a§_6h2,oh3,oh1,2b2,o

-6
hin and a} " heohsohi2ho1b1n-1.
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m
Subcase 2.2. If \3 =1, then > ci3=0p
i=1
Note that ¢;3 = 0 or 1 and m < p. It is easy to get that m = p. Note
that dim h = p, we can easily see that for any ¢, dim z; = 1 and

h=z1z9- - zp € E(hpmilm > 0,7 > 0) ®P(an[n > 0).

When n = 4, it is easy to see that 2014— Zcm—O
i=1 =1

For n > 4, from (3.4) we have that

p
ZC,‘A +1=0+ Agp.
i=1

By the fact that ¢;4 = 0 or 1, we have that Ay = 1. By induction on j,

p
we have that A\; = 1,4 < j <n—1. And then we have that > ciz=n,
i=1

P p P
2014— Z zn_1=p—1,and Zci,nzo-

p p P
When n =4, From Y. e, =p—6, > cio=p—-4, >, ci1=p—3,

1=1 i=1 i=1

P P
> ci2=p—3and ) ¢;3 =p, we can prove that h = z1z5 - - - 2, cannot
i=1 i=1
exist by an argument similar to that used in the proof of Theorem 3.1

(cf. [5]).
P
When n > 4, by the facts thatz Ci3 =D, Z Cia = Z =
i=1 i=1
— 1, deg hg; = g®@*7 1+ .- +p/) (k > 1,5 > 0) and deg a; =
q(pi_1 +---+p+1)+1 (> 0), we can divide the p z;’s into two disjoint
classes S7 and S». The two disjoint classes are given by

S1 = {z|deg . = g(p™ "t + p" 2 + -+ + p3) + lower terms},
Sy = {z|deg = = gp> + lower terms}.

For a class S in this paper, denote the number of elements in S by N(S),
then we can get N(S1) =p— 1 and N(S3) ='1. Similarly, by the facts

y4 P P Y4
that Zei:p_6,Zci,O:p_‘laZCi,1ZP_3»ZCi,2:p_3a
i=1 =1 i=1 i=1

Zm =p, deg hgj = g@* 1+ ... +pI) (k> 1,5 >0) and deg a; =

i=

q(pl 4o+ p+1)+1 (i > 0), we can also divide the p z;’s into four
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disjoint classes. The four classes are given by

S3 = {z|deg = = g(higher terms + p3 + p® + p+ 1) + 1},

N(S3) =p—6;
Sy = {z|deg = = q(higher terms + p® + p? + p+ 1)}, N(S4) = 2;
S5 = {z|deg = = q(higher terms + p® + p? + p)}, N(S5) = 1;
Ss = {z|deg = = g(higher terms + p3)}, N(Ss) = 3.

Since S;|US2 = S3US4USs5 U Se, then at least two elements of Sg
must be in S7. Then there would be at least two hn_33’s in A with
deg hy—33 = q(p™* + - -+ + p3). This is impossible since h%’j =0,7>0,
3 =>0.

From Subcase 2.1 and Subcase 2.2, we get that when s = p—6, EY ot
has the following generators: a§—6h1,0h3,0h2’1bg,ohl’n, a§_6h1,0h3,0h1,2
ha1 hi11h1q, a§_6h2,0h3,oh2,1b1,1h1,n, a§—6h2,0h3,0h1,2bz,0h1,n and a§‘6
haohso hi12h21b10-1.

From Case 1 and Case 2, the lemma follows.

LEMMA 3.7. Let p>7,n>4,0< s < p—>5. Then the product

bohohnFsss 7 0 € Ext;+7,p"q+(s+3)pzq+(s+3)pq+(s+2)q+s(Zp, Zp).

%, %k

Proof. It is known that hyn, b1, and afhzoho1hi2 € EJ77 are
permanent cycles in the May spectral sequence and converge nontrivially
t0 hn, b, Ys+3 € Ext’y*(Zp, Zp) for n > 0 respectively (see Theorem 3.1).

From Lemma 3.2, we know that Ef+6’tl’* has the generators a3hi o0h30
ha1b20h1n, a3hyphsohi2he1h1,1h1 0, a§haohao ho1b1,1h1n, a3 ke ohso
h12b2,0h1 5, and aghaohsohi2h21b1 01, Where t' = p"q + (s + 3)p%q +
(s+3)pg+(s+2)g+s.

By induction on s and (2.2), we can show that

di(a3hzoh2,1h1,0h1,nb20)

=(-1)*sa5 " ash1,2h30h2,1h1,0R1 nb2,0+

(—1)**adhs oh12ho1h1,0h1 nb2o + (—1)%aihs oha,1h1,2h1 ohi nb2go

#0, ‘

di(a3hsoh2,0h1,2h1,nb2,0)

=(—1)*sa§ *a1he,1h3 0ha 0h1,2h1 nb2,0 _

+ (=1)°a3hooh12h2 1h1 0h1nbeo + (—1)°a3hsohi,1h12Rh1 0h1nb20

#0,
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di(azhsohooh2,1h1nbi 1)
=(—1)*sa$  agh1 23 0ho0h2,1h1 nb1 1+
(=1)%a5hsphioh11he1hinbia + (—1)*aShs phoghiihi2hi nbr
#0,
di(a3hsoho,1h12b1n_1h20)
=(—-1)*a3h3oh2,1h1,2b1n-1h10h1,1
£0.

From the above results, we see that the four differentials of generators
are impossible to equal b ghioh1najhsoh2,1h12 up to nonzero scalar
and are linearly independent.

Meanwhile, we have that for r > 1, d,- (a§h1,0h3’0h1’2h271hl’lhl’n) = 0.

Thus ESYY" C Z,{a$hi ohsohiahaihi1hip} for all 7 > 2. Thus the

s+7,t %

permanent cycle b1 oh1oh1na3hsoha1h1o € Er does not bound.

That is to say, by oh10h1na3h30ho1h1 2 € ESTTE Y g a permanent cycle
in the May spectral sequence and converges nontrivially to byhg hn'?s+3 €
Ext ™ (Z,,2,). Tt follows that bohohn¥sss # 0 € Bxty ™ (Z,, Z,).
The lemma is proved. O

LEMMA 3.8. Letp>7,n>4,0<s<p—5,2<r<s+ 7. Then

the group EXtS+7 —r,g{p"+(s+3)p? +(s+3)p+(s+2))—+—(s r+1)(Z 7 ) 0.

Proof. The proof is divided into two cases.

Case 1. r=s+T.

Since q(p™ + (s +3)p®* + (s +3)p+ (s +2)) +s+1—1r = q(p*
(s+3)p> +(s+3)p+(s+2)+s+1—s5—7=q(p" + (s + 3)p?
(s+3)p+(s+1))+qg—6 > 0, then we have that when r = s + 7,
Exti+7—r,q(p"+(s+3)p2+(8+3)p+(8+2))+(s r+1)( Zp, Zp) = 0.

Tl

Case 2. 2<r<s+17T.

Now we prove that when 2 < r < s+ 7, Ext5~ e (Zp, Zp ) 0.
It suffices to prove that in the May spectral sequence ESHT " =
where " = q(p™ + (s + 3)p* + (s+3)p+ (s +2)) +(s—r+1).

Consider h = 2122+ - T € Eer7 ~nt"* where ; is one of ax, hyj; or
bu,z,OSkgn—l—l,OSH-]§n+1,0§u+z§n,l>0,j20,u>0,
z > 0. Assume that deg z; = q(¢;np™ + Cin—1p" "' + -+ + ¢ig) + €,
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where ¢;; =0or 1, e; =1 if z; = ay,, or ¢; = 0. Then we have

m
deg h = Zdeg x;

i=1

m m m
=q(Q i)™+ + Qi) + O i)y
i=1 i=1 i=1

m

+ (Z ci0)) + () _e)

i=1

=q"+ (s +3)p* + (s +3)p+ (s+2)) + (s — 7 + 1),

m
dimhzz:dimxi:s-k?—r.
i=1
Note that dim z; = 1 or 2 and 2 < r < s+ 7, we can get that
m<s+7—r<s5+7—-2=54+5 < p from the equality dim h =
m
Yodimz;=s54+7—7.
i=1
We claim that s —r+ 1 > 0. For otherwise, we would have p >
m
Y ei=q+(s+1—-r)>q—6>pbyp>7 Thatis impossible. Then
i=1
the claim follows.
By an argument similar to that used in Case 1 of Lemma 3.2, we can
get that

m m m
Zeizs—r+l, Zci,0=s+2, 201'71:8-}—3,
i=1 i=1 =1

m m m m

Y Cia=5+3, YCiz==3 Cn1=0, Y cn=1
i=1 =1 i=1 =1

It is easy to see that there exists a factor hiyn or by p—1 in h. We can

denote hi s or by p—1 by @, then b’ =1+ 2,1 € Ei,t//,_pn%*, whore
l=s84+6—7ors+5—r. And we have that

m—1 m—1

>oe=s—r+1l, 3 co=s5+2,

=1 g=1

m—1 m—1
Ci’1=$+3, Zci’2=s+3.

i=1 =1

Subcase 2.1. If

! _pyn
h=2x1Z3 - Tm_1h1n b = 1T~ Tm—1 € Es+6 " L O
s Tey 1
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m—1

When r > 3, from s+ 6 —r < s+ 3 = > ¢;1 we can get that
i=1

EST6-" =P — ( by Proposition 2.3. When 2 < 7 < 3, we can

easily show that EST6"~P"9* — ( by an argument similar to that

used in the proof of Lemma 3.2.
Subcase 2.2. If

B 1 — gt
h=x1z9-"- xm_lbl,n_l, h = T1X2 - Tm—-1 € E;_’_ " LA

m—1
If2<r<s+7 froms+5—7r<s+3= 3 c1, we have that
i=1

= 0 by Proposition 2.3. If r = 2, we can easily show
that Ef+5—r’t/””p "%* = 0 by an argument similar to that used in the
proof of Lemma 3.2.

From Case 1 and Case 2, it follows that EST7~""* = 0. Thus

ExtSA+7"r’tW(Zp, Zp) = 0. This finishes the proof of Lemma 3.8. O
Now, we give the proofs of the main theorems in this paper.

Proof of Theorem 1.4. It is known that hg € Exth’q(Zp, Zp) is a per-
manent cycle and converges nontrivially to the a-element o = joi €
7g—1S in the Adams spectral sequence. By virtue of the second part
of Theorem 1.1, we have that the homotopy element a3j&, € .S is
represented up to nonzero scalar by ho(bohn + hibn—1) = hoboh, €
Extj’p "etPate(z  Z,) in the Adams spectral sequence.

From [9], we see that

hobohn, # 0 € ExtiP 1T (7, 7).
Meanwhile, from [6], we have that groups
Exti—r,p"q+pq+q—r+1( Zp, Zp) =0,

where 2 < r. Thus it follows that hoboh, # 0 € Exty? 7TP1%9(Z, 7,)
converges nontrivially to the homotopy element a;j§, € w5 in the
Adams spectral sequence. This completes the proof of Theorem 1.4. [J

Ef+5—'r,t”’—p"q,*

To prove Theorem 1.5, it is equivalent to prove the following.
THEOREM 3.9. Let p > 7, n > 4. Then the product
n 2
bOhOhnﬁ’s-i-?, # = EXtSA+7,P g+(s+3)p Q+(s+3)l74+(s+2)q+s(zp, Zp)

is a permanent cycle in the Adams spectral sequence and converges to a
nontrivial element 7,1 301j&y, of order p in Tpn gy (s43)p2q+(s+3)pg+(s+2)q-79
where 0 < s <p-—5,¢g=2(p—1).
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Proof. From [2], (bghy + h1by—1) € Exti’panrpq(Zp,Zp) is a perma-
nent cycle in the Adams spectral sequence and converges to a nontrivial
element j&, € Myngppg—35 for n > 4. Let « : e +r+) Yy (2) - V(2) be
the vz-map and consider the following composition of maps

F=eysonjé, : mPietpa-3g Fn g I yogtig W yoetly(2)

1 S (s+3) (P2 +p+1)g— ™y (2) 25 '3 5~ (s+3)@*+p+D)a+(p+1)a+4g.

Since up to nonzero scaler &, and a1 = joi are represented by (bohn +
hibn-1), ho € Ext*(Z,, Z,) respectively, then the above f is represented
up to nonzero scalar by

e = (55'7)x () T3 0) x(ho(bohn + h1bp—1))
= (4577 T%11). (bohohn).

From Theorem 3.1 and the knowledge of Yoneda products we know
that the composition

(74'4)

Ext (H*V(2), Zp)

(039 () * ExtsA+3,(s+3)p2q+(s+2)P(I+(S+1)fI+3( Z,, Zy)

Ext}’(Z,, Z,) —

is a multiplication (up to nonzero scalar) by

Ys+3 € Exts+3 (s+3)p ‘1+(S+2)pq+(s+1)q+S(Z Zp).

Hence, f is represented (up to nonzero scalar) by

= ')/s+3boh0hf 75 0e EXtS+7’p q+(s+3)p* Q+(5+3)Pq+(3+2)‘I+5(Z 7 )

in the Adams spectral sequence (see Lemma 3.7).

Moreover, from Lemma 3.8, we can see that bohoh,¥s+3 cannot be
hit by the differentials in the Adams spectral sequence and so the cor-
responding homotopy element f = 7, 30 jé, € 7S is nontrivial and of
order p. This finishes the proof of the theorem. O
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