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STABLE VECTOR BUNDLES OF RANK
TWO ON ENRIQUES SURFACES

HoiL Kim

ABSTRACT. We describe the moduli spaces of stable vector bundles
of rank 2 on Enriques surfaces. They all have the structure of the
fibrations reflecting those of Enriques surfaces.

0. Introduction

Moduli spaces of stable vector bundles of rank 2 on complex surfaces
have been studied by several authors. The structures of the moduli
spaces of stable bundles on surfaces such as rational surfaces ([2], [12],
[9]), ruled surfaces([5], [24]), K3 surfaces ([15], [16], [21], [22]), elliptic
surfaces ([11], [10], [18]) and some surfaces of general type ([4], [8]) have
been described. In this paper, we study the moduli spaces of stable
vector bundles of rank two on Enriques surfaces. Every Enriques surface
is elliptic. So, we can compare our results with those of R. Friedman,
who gave a complete description of the moduli spaces of stable vector
bundles of rank two with ¢; = 0 and c2 > 2py + 2 on regular elliptic
surfaces ([10]). We could describe the moduli spaces of vector bundles of
rank two with general Chern classes on Enriques surfaces as two different
types (also showing the existences), so that Friedman’s result can be
included in these two types. They all have the structure of fibrations
reflecting the fibration structure of the original Enriques surfaces.

On the other hand, the universal covering space of an Enriques surface
is a K3 surface. So, we can compare these moduli spaces with moduli
spaces of stable bundles on the corresponding K3 surface. In fact, we
showed that the moduli space of stable bundles on an Enriques surface
is mapped by degree two onto a Lagrangian subvariety in the moduli
space of stable bundles, which is a symplectic variety, on the covering K3
surface [13]. In this paper, we mention the corresponding components

Received January 5, 2005.
2000 Mathematics Subject Classification: 14J28, 14J60.
Key words and phrases: stable vector bundles, Enriques surfaces, moduli spaces.



766 Hoil Kim

of the moduli spaces of stable bundles on the K3 surface. The complete
description will be described later.

The contents of this paper is as follows. In chapter one, we will cover
the preliminary facts and known results related to our work. In the fol-
lowing two chapters, we state the main results based on this classification
and in the final chapter, we will make some remarks.

The author is very grateful to professor Igor Dolgachev for his sug-
gestion of this problem and much helps. This work was also influenced
by Prof. S. Mukai’s suggestion that on Enriques surfaces we can use the
big Picard group to transform the given moduli spaces to some known
moduli spaces. He also wants to show thanks to Prof. A. Tyurin and
D.Huybrecht for helpful discussions. This work was financially sup-
ported by KRF-2003-041-C20009.

I. Preliminaries

An Enriques surface is a projective nonsingular surface X with 2K x ~
0,(but Kx = 0), where Kx is the canonical divisor of X and H'(X, Ox)
= 0. The unramified double covering space of X defined by the torsion
class Kx is an algebraic K3 surface with a fixed point free involution.
Every Enriques surface X admits an elliptic fibration over P! and every
elliptic fibration f : X — P! has exactly two multiple fibres F4 and
Fp such that 2F4, 2Fp are linearly equivalent to a generic fibre F. Kx
(briefly K) ~ F4 — Fg. Here F4 and Fp are called half fibres. The map

c1:PicX - HY(X,2) =2V Z,
is an isomorphism and
NumX = H?*(X,Z)/Tor(H*(X,Z)) = Z'°.

So, we identify PicX with H?(X,Z) in this paper. On an Enriques
surface or a K3 surface L? = L - L is an even number for any divisor L.
On an Enriques surface X,

x(Ox (L)) = hO(L) — KAL) + h3(L) = %Lz +1.

DEFINITION. An Enriques surface with a smooth rational curve
R(R? = —2) is called a nodal surface, otherwise it is called an unn-
odal surface.
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REMARK. In the 10 dimensional moduli space of Enriques surfaces,
a generic one is unnodal, while the nodal ones form a 9 dimensional
subvariety ([6]).

DEFINITION. For any divisor D > 0, with D? > 0, we define
#(D) = inf{D - f|f € NumX, f2 =0, f > 0}.
THEOREM 1. [6] 0 < ¢(D)? < D2,

DEFINITION. Let C be an irreducible curve on an Enriques surface
X with C? > 2. Then |C| is called a hyperelliptic linear system if one
of the following equivalent conditions is satisfied.

i) The map ¢ associated to C is hyperelliptic, that is, C? = 2 or it
is of degree 2 onto a surface of degree n — 1 in P”.

ii) |C| has base points.

iil) ¢(C) = 1.

iv) C ~ (n—1)E+ F or C ~ nE + R for some n, where |2E| and
|2F| are elliptic pencils and R is a smooth rational curve such that
E-F=E-R=1.

THEOREM 2. [6] Let D be an effective divisor on an Enriques surface
X with D? > 0. Then

D ~ D'+ Xm;R;, m; >0,

where R; is a smooth rational curve and one of the following cases occurs:

i) D' is an irreducible curve with D'? > 0;

ii) D' is a divisor of canonical type, that is, D' ~ ¥n;D; is an effective
divisor with irreducible components D; such that K - D; =D’ - D; =0
for all i;

iii) D' ~ 2E + R, where |2E| is a genus 1 pencil and R is a smooth
rational curve with E - R = 1.

REMARK. [6] There exists w, an element of the Weyl group of X
generated by the reflections with the smooth rational curves, such that
D' = w(D). On an unnodal Enriques surface, every effective divisor D
with D? > 0 is ample.

THEOREM 3. [3] Let D be a divisor with D?> > 0 and D ~ 0, K.
Then D is effective or —D is effective. If D is effective, then D + K is
also effective.

THEOREM 4. [6] For every elliptic pencil |2E| on an Enriques surface
X, there exists an elliptic pencil |2F| such that E - F = 1.
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DEFINITION. A vector bundle E is called (semi-)stable with respect
to an ample divisor H, if for any subsheaf F', where 0 < rank(F) <

rank(FE),
(cr(F) - H)/rank(F)(<L) < (c1(E) - H)/rank(E).

REMARK. If the moduli space of stable bundles, M, exists, then it is
a quasi-projective variety. By the deformation theory, we can compute
the dimension of the tangent space T M at E € M and the dimension
of M at E. If the rank = 2,

dim TgM = 4cy — 2 — 3 + h*(EndE),
where h?(EndE) =0 if E % E(K) and 1 if E & E(K) and
dimg M > 4cy — 2 — 3.

THEOREM 5. [13] If E is a singular point in the moduli space of
bundles of rank 2 on an Enriques surface X, then E = 7, L, where L is
a line bundle on its covering K3 surface X and 7 is a natural projection
map from X to X.

We determined the possible types of Chern classes of rank 2 stable
bundles (mod Picard groups) on the Enriques surfaces.

THEOREM 6. [14] we can find a divisor D(V,n) depending only on
V € PicX and n € Z such that for any rank 2 vector bundle E with
c1(E) =V and c2(E) = n on an Enriques surface X, one of the following
holds.

() 3c1(E(D))* = e2(E(D)) ~ 1,

(B) 3c1(E(D))* = c2(E(D)).

REMARK. In the case (A), we have 2¢c; > dim M > 2¢3 — 1 and in
the case (B), we have 2co — 2 > dim M > 2¢; — 3. So, we have only to
consider ¢z > 0 in the case (A) and ¢z > 1 in the case (B). However, in
the two main theorems in this paper we assume that ca > 2 in the case of
(A) and c2 > 3 in the case of (B) on unnodal Enriques surfaces. In these
cases ¢1 is ample. The cases ¢co = 0,1 in (A) and the cases co = 1,2 in
(B) will be treated differently. We know from Riemann-Roch theorem
that any stable bundle E with ¢;(E) ample satisfying the conditions
(A)(or (B)) has a section. Indeed,

x(E) = h%(E) — h'(E) + h*(E) = 1(2),
so that h°(E) > 1(2), since h?(E) = 0.

Let us fix the notations.
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X is an Enriques surface and its universal covering space, which is
a K3 surface, is denoted by X and the quotient map from X to X
is m. Let Mx u(r,D,cz) be the moduli space of stable vector bundles
with respect to an ample divisor H, where 7 is the rank of the bun-
dle, D is the determinant bundle and ¢z is the second Chern class. Let
M?(‘,vr* g (1, 7™ D,2ca) be the corresponding moduli space of stable bun-

dles with respect to 7*H on X. We denote by i the involution on X
compatible to 7 and by ¢* the induced involution on M=.

II. %cg +1=co

First we state the main theorem of this chapter.

THEOREM 1. (1) Let Mx (2, H,c2) (briefly M) be the moduli space
of stable vector bundles on an unnodal Enriques surface X of rank 2 with
determinant H, the second Chern class co which satisfy %H 41=cp>2
and are stable with respect to H. Then M is nonempty and there is a
rational map f from M onto an open set U in P = |H + K x|, the linear
system of H + K x, where the fiber over a curve C € U is a nonempty
Zariski open subset of the symmetric power of C,Sym®(C).

(2) M has at most finitely many isolated singularities and the bundle
E corresponding to a singular point is w,L, where L is a line bundle on
the universal covering K3 surface X with L? = —2.

Proof. First assume that M is non-empty. Then, dim M > 2¢y — 1.
For E € M, there exist an effective divisor D, Iz, the ideal sheaf of a
zero scheme Z and an exact sequence,

0— Ox(D)— E— Iz(H-D)—0,
since h’(E) > 0. Since F is stable with respect to H, we have
D-H< %HZ’.
Here D - (H — D) + degZ = cg, which implies
D-H < D?+ ¢y — degZ.
By the Hodge Index theorem, we obtain

1 1
D?H? < (D -H)? < §H2D2 + §H2(c2 — degZ).



770 Hoil Kim
(Note that this implies D2H? < 1D?H? + 1H?%cy, so that D? < ¢p.)
Now we can divide into two cases;

i) degZ > cq, ii) degZ < co.

i) Case 1; degZ > cg;
In this case we get

D*H? < (D-H)? < -D*H?.

N[ =

The only possibility is that
D*=0,D-H=0.
Here H is ample and D is effective. So,
D =0, degZ = cs.

Let My C M be the collection of bundles which has an isolated zero
section and let

M¢ = {E € My|h*(E(K)) =i +1}.
Then M¢ is empty for i < 0, since h°(E(K)) > 1 for any E € M. From
the exact sequence,
0— Ox(K)— E(K)— Iz(H+ K)— 0,
we have
RO(B(K)) = h(I(H + K)) = B (I (H + K)) =i + 1,

since h9(K) = hY(K) = x(Iz(H + K)) = h*(Iz(H + K)) = 0. We
compute the dimension of M{ for i > 0. Let S* = {Z|h°(Iz(H + K)) =
i+ 1} C Sym®(X). To every bundle E € M{ we can associate a cycle
Z € S* and E corresponds to a non-trivial element in

Ext(Iz(H),Ox) = Ext(Iz(H + K),Ox(K)) = HY(Iz(H + K))*.

So, we have

dim M¢ < dim S° + 4.
Now we compute the dimension of S*(¢ > 0). Let G = Grass(2, h°(H +
K)) and let

S={(V,2)|Vc H(Iz(H + K))} C G x Sym®(X).
Then, dim S=dim G and we have the second projection map

f:8 — Sym®(X).
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The image is the union of S(i > 0) and f~1(Z) = {(V, Z)|V c H(Iz(H
+K))} for Z € S*. So, we have
dim S* < dim G — dim Grass(2,7 + 1) = 2cy — 2 — 2i,
since x(H + K) = h°(H + K) = ¢, for an ample divisor H. This implies
that .
dim Mg <2c; —2—-i<2c; — 1< dimM,
ifi>0.
ii) Case 2; degZ < cg;
In this case D > 0, so that we obtain an exact sequence with a zero
scheme Z,
0 - Ox — E(-D)— Iz(H-2D)— 0.
Note that H - D — D? > 0 and degZ = c; — (H - D — D?).
From x(Iz(H — 2D + K)) = —(H - D — D?) < 0, we have
dim Ext(Ox, Iz(H2D)) = h'(Iz(H — 2D + K))
=h%(Iz(H - 2D + K)) + (H - D - D?)
=hE(~-D+K))+H-D - D*
since h?(Iz(H—2D+K)) = h*(Ox(H-2D+K)) = h%Ox(2D—H)) =0
due to 2D - H < H?. Let Mp C M be the collection of the bundles E,
where E(—D) has an isolated zero section and let

MY = {E € Mp|h°(E(-D + K)) = i}.
Then
dim M% < dim Sym®~HP-D*)(x) + F.D - D? -1
<2(;—(H-D-D*)+(H-D~-D*-1)
< 2c9 —~1<dimM.

Now we want to have a bound of h9(H — 2D + K). From the exact
sequence,

0—-O0x(—2D+K)—-Ox(H-2D+K)—> Oc(H-2D+K) — 0,
where C is a smooth curve in |H|, we have
RY(Ox(H — 2D + K)) < h®(Oc(H — 2D+ K)) < ¢; — H - D,
by the Clifford’s theorem.
(Note that 2 genus(C) — 2= H? > C-(H - 2D + K) > 0.) So,
dim M}, < R%(H — 2D+ K) —1+c¢y— (H-D — D?) + (H - D — D?)
<200—1—H-D<2c-1<dimM.
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dim My (i > 2) < 2(h%(H — 2D + K) —2) — 2(i — 2)
+(H-D-D¥)+i-1
<2 -1-i-D*<25—-1<dimM

with the same argument as before. Note that D? > 0 for any effective
divisor D since any effective divisor is generated by the curves of the
arithmetic genus 1 on an unnodal Enriques surface ([6]).

So, My is open and dense in M and Mg is open and dense in My, so
that we conclude that Mg is open and dense in M.

Conversely, each zero cycle Z of degree ¢y consisting of distinct points
on a smooth curve C € |H + K| with h%(Iz(H)) = 0 and h°(Iz(H +
K)) = 1 determines a unique vector bundle E(Z,C),

0—-O0Ox — E(Z,C)— Iz(H)— 0,

since dimExt(Iz(H),Ox) = 1 (See [21] and [22]). We claim that F
is stable. Suppose that F is not stable. Then there exists an exact
sequence,

0—-Ox(L)— E—Iw(H—-L)—0,

such that L+ H > 1H% = ¢ — 1 and W is a O-dimensional scheme. So,
we have

L-(H—-L)=cy—degW <y,
which implies
L? >0,

so that L is effective. (Note that L? is even.)

From the condition that h(Iz(H)) = 0, we have h°(E) = 1 and we
already know that E has an isolated O-section. So, the injectivity of
Ox (L) — E forces L to be 0. Otherwise, E has no isolated 0O-section.
This gives a contradiction.

Let N be {(Z,C)|Z is a 0-cycle of degree cy of distinct points on a
smooth curve C € |H + K|, h%(Iz(H)) =0 and h°(Iz(H + K)) =1} C
Sym®(X) x |H + K|.

Now we can construct a vector bundle Z on N x X such that Z|z ¢y =
E(Z,C), exactly following the method of Okonek and Van de Ven [18].
We defineI' = {((Z,C),z)|(Z,C) € N, z € X andx € SuppZ} C NxX
and denote by Ir its ideal sheaf. We define on N,

L = Ext! (Ir ® n3(Ox (H)), 73(Ox)).
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Since dimExt!(Iz(H),Ox) = 1 for any (Z,C) € N, we see that L is a
line bundle. By [1], [18], there is a spectral sequence,

HP(Ext?, (Ir ® m3(0Ox (H)), 73(0x) ® (L))
— ExtPt9(Ir @ m5(Ox(H)), m3(0x) @ 71 (L*)).
From this sequence we derive
Ext!(Ir ® m3(Ox (H)), 73(0x) ® 75 (L*))
= H°(Exty, (Ir ® 13(Ox (H)), 73(0x) ® m{ (L")
= H(L® L*) = H°(Ox).

Here we used the fact Hom(Iz(H),Ox) = 0. So, we can associate to
1 € H%(On)(N is connected), an extension

0—m(0x) = E—Ir®@m(Ox(H)Q®m (L)) — 0

on N x X, with E locally free, and Z|(z ¢ is isomorphic to the bundle
E(Z,C). Then by the universal property of a coarse moduli space M,
the bundle = induces a morphism g : N — M, such that it is injective
and the image is in M{). By the Zariski’s main theorem, N is biregular
to its image. MJ — g(N) = M; U M,, where M; = {E € M|h°(E) > 2}
and My = {E € My|the unique curve |Iz(H + K)| is singular}, where E
is the non-trivial extension of Iz(H) by Ox. Then, dimM; < dim|H|+
dim|H + K| < 2cy — 1 since h%(Iz(H)) = h°(E) — 1 > 1 and dimM, <
dim|/H + K| — 1+ ¢z < 2¢; — 1. So, g(N) is open and dense in M.
Since N is of dimension 2cy — 1, connected and irreducible, M is also
of dimension 2¢y — 1, connected and irreducible. (Note that MJ is open
and dense in M.)

Let E be a singular point in M. Then, F & FE(K) and E & 7L
for some line bundle L on the universal covering space X ([20]). n*E =
L@ i*L. We can get 2¢1(E)? = 2L% + 2L - i*L, 2co(E) = L -i*L. So,
we obtain L? = ¢1(E)? — 2c2(E) = -2, (L — i*L)? = —4cy — 4 and
L —i*L € m* H* which is a negative definite lattice. So, there can be
only finitely many decompositions of 7*c;(E) into a direct sum of a
divisor L and its involution *L. So, if ¢ > 2, then dim M must be
2c2 — 1 > 0, since for a generic E € M, E 2 E(K) and h?(EndE) = 0,
so that M is generically smooth. (In fact, dim N = 2¢o — 1.) O

REMARK 1. We can see that there is no singular point in g(N).
In fact, any E in the image of N in M is uniquely determined by an
effective zero cycle Z of degree co( E)(= genus(C)) on a smooth curve
C. Then, Oc(Z + K) has an effective divisor Z’ which determines FE’,
since the degree of Z + K on C is c; = genus(C). Here 7*(O¢(2))
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is linearly equivalent to 7*(O¢(Z + K)) on 71(C), so that m*E =
7*E’ ([21]). Then, E & E' or E = E'(K), since h°(n*(E* ® E')) =
RO(E* ® E') + h%(E* ® E'(K)). However E is not isomorphic to E’,
since O¢(Z) # Oc(Z + K) if genus(C) > 2. So, we can conclude that
E(K)= E' € g(N) and FE is not a singular point.

REMARK 2. Let Mw(2,7*H,n*c2) be the moduli space of stable
bundles of rank 2 with determinant 7*H and the second Chern class
m*cz which are stable with respect to 7*H. Then M5 has a component
M which has a fibration structure over |7*H|, where the fibre over a
curve D in |[7*H| is the Jac(D). Then M is mapped into M by 7*. We
can illustrate it by the following diagram

MS — M

™

1| al
|H + K| " |n*H),

where f~1(C) = Sym®(C) for C € |H + K| and h™1(D) = Jac(D) for
D € |x*H|. Here ©*(Sym®(C)) = Jac(x}(C))¥", the fixed locus in
Jac(r~1(C)) by i*. (Note that Sym®2(C) is birational to Jac(C).) The
details will be described in a later paper.

REMARK 3. In theorem I, we assumed that ¢ > 2. However, ¢2 > —2
is necessary for the existence of stable bundles. If ¢ = —2 and c; = 0,
then there exists a stable bundle if and only if ¢; = N + 25 + K, where
N is a nodal class and S is a divisor ([13]). If ¢? = 0, then there exists
no stable bundle with ¢; = 0 and ¢2 = 1, but there exists a stable bundle
with ¢1 = f and ¢a = 1, where |2f| gives an elliptic system. We will
show this as an example.

ExXAMPLE. Let M be the moduli space with ¢; = F4 and ¢c3 = 1.
Then, we can show easily that M is birational to Fp and vice versa
following the methods in ([18]).

I 1 =c,

Here we state the main theorem of this chapter.

THEOREM 1I. (1) Let Mx y(2, H, c2) (briefly M) be the moduli space
of stable vector bundles on an unnodal Enriques surface X of rank 2 with
determinant H with the second Chern class co which satisfy %H 2 =¢y>
3 and are stable with respect to H. Then, M is non-empty.
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(a) If |H| is not hyperelliptic, then there is a rational map f from M’,
a component of M, onto an open set U € P = |H|, the linear system of
H, where the fiber over a curve C € U is a non-empty open subset of
W, (C) (special effective divisors of degree c; on C).

(b) If |H| is hyperelliptic, then M has a structure described in theo-
rem I in chapter 2 (%H2 +1=c¢y).

(2) M has at most finitely many isolated singularities and the bundle
E corresponding to a singular point is w.L, where L is a line bundle on
the universal covering K3 surface X with L? = 0.

Proof. First assume that M is non-empty. Then, dimM > 2¢o — 3.
For E € M we have h°(E) > 2. As in the previous case, we have an
exact sequence,

0— Ox(D)— E — Iz(H—-D)—0,

where D is an effective divisor and Iz is an ideal sheaf of a zero scheme
Z. In the same way as in the previous proof, we can divide into two
cases,

i) degZ > cg, ii) degZ < cs.

i) Case 1: degZ > co

In this case D = 0 and degZ = c» as we discussed in the proof of
the theorem I. Let My C M be the collection of vector bundles which
have an isolated zero section and let M¢ = {E € Mo|h°(E(K)) = +2}.
Then M¢ is non-empty for ¢ > 0 (empty for 4 < 0) and for each E € M}
we have an exact sequence

0-0x >F—Iz(H)—0
and from this and x(Iz(H + K)) =1, we get
R(E(K)) =hIz(H+K)=ht(Iz(H+K)+1=1i+2.
As in the previous argument,
dim M} < dim Grass(2, h°(H + K)) — dim Grass(2, h°(Iz(H + K)))
+i— (W(E)-1)
<2ce+1-2)—2(1+2-2)+i—1=2c0—3—1.

So, dim M¢ < 2¢2 — 3 < dim M for i > 0.

ii) Case 2: degZ < ¢z
In this case D > 0 and H - D — D? = ¢y — degZ > 0 and we obtain
an exact sequence,

0—-Ox — E(-D)— Iz(H-2D)— 0.
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Let M p C M Dbe the collection of the bundles E, where E(-D)
has an isolated zero section. Now we divide into two cases again, a)
degZ = c2 — 1 and b) degZ < c2 — 1.

ii-a) degZ = ¢y — 1

In this case H- D — D? = (H — D)- D = 1. We claim that D is a
half fiber such that H - D = 1. So, these cases happen if and only if |H|
is hyperelliptic. To prove this claim, first let us compute (H — D)2

(H-D)Y=H?-2H-D+ D* > 0,

since H2 —2H - D > 0 and D? > 0. The first inequality comes from
the stability of E and the second one comes from that D is an effective
divisor on an unnodal Enriques surface. So, H — D is ample and D is
a half fiber, since D is a curve of arithmetic genus 1. Then, H - D =
(H — D)- D+ D? =1, so that |H| is a hyperelliptic system. Note that

1, 1

SHE(-D) =3

We know that a generic element in Mp is stable with respect to H' = H—
2f, which is ample, by the result of Qin ([25]). So, we can conclude that
Mx (2, H,c2) is birational to Mx g+ (2, H', c; —1) if |H| is hyperelliptic.
ii-b) degZ < ¢y — 1
Let MYy = {E € Mp|h®°(E(—D + K)) = i} for i > 0. Then, for
E € M}', we have
RO (Iz(H — 2D + K)) =1,
Y (Iz(H-2D+ K))=i—1+(H D - D?).

(H —2D)? = degZ — 1 = c3(E(-D)) — 1.

Note that H - D — D? > 2. As in the previous case,
dim MY < 2(c; — (H-D — D?)) + (H-D — D* - 2)
=2co—(H-D—-D?* -2
< 2¢p — 4 < dim M.

Since h°(H — 2D + K) < ¢ + 1 — H - D by the Clifford’s theorem as
before,
dim M}, < (R°(H — 2D + K) — 1) + (c2 — (H - D — D?))
+(H-D-D?-1)
<ca—(H-D)+cp—1
=2c,—1—(H-D).
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If H-D > 3, then dim M}, < dim M. Suppose that H - D = 2. Then
H—2D is ample if H? > 10, since (H—2D)? = 10—4H-D+4D? > 0, so
that h®(H —2D+K) = x(Ox(H—2D+K)) = co—2(H-D—D?)+1. So,
in this case also, dim M} < dim M. If H? = 8, then dim M}, < dim M
since hO(H — 2D + K) < 2 ([6]). If H? = 4 or 6, then M}, is empty,
since h®(H — 2D + K) = 0 ([6]). For i > 2, we have
dim M < 2(h°(H-2D+ K)—-2)-2(i—2)+ (i —2+ H - D —~ D?)
<2 ~1i—(H-D-D?% < dimM.

So, MY is open and dense in M if |H| is not hyperelliptic and if |H| is
hyperelliptic, M is birational to the moduli space in the previous case
%C% +1=cs.

Conversely, if Z is a divisor on a smooth curve C € |H| of degree
c2 = genus(C) — 1 with

h°(C,0c(2)) = K°(C,0c(Kc - 7)) = h*(Iz(H + K)) = 2,
WO (Iz(H)) =1,
then we can construct a locally free sheaf F(Z, C), uniquely determined
by HY(Iz(H + K)), whose dimension is 1
0—Ox — E(Z,X)— Iz(H)— 0,

as in the theorem I. We claim that E is semi-stable and stable for a
generic E. To prove that E is semi-stable, we can use just the same
method that we used in the previous theorem. Suppose E' is not stable.
Then there exists a divisor L such that L - H = %H 2 and there is an
exact sequence,
0-0x(L)—-E—-IyH-L)—0.
We have
degW =c; —H-L+L?>0,
so that,
L? > 0.

However, L? < 2, not to contradict that E has an isolated zero section.
(Note that h°(E) = 2.) Then,

L*=D?=0, L-DZ%H2=CQ, degW =0,

where D = H — L. Hence if F is not stable, F is an extension,

0 - Ox(L) = E — Ox(D) — 0,
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with the above condition. However there are only finitely many such
decompositions (H = L + D), since H is ample and (L — D) - H = 0,
(L — D)? = —H? and the intersection form on H-' is negative definite.
Note that also the dimension of Ext!(Ox(D),Ox(L))—1= h}(L—D)—
1 = ¢g — 2 which is smaller than dim |H| + p(c2 + 1,1, ¢c2) = 2¢2 — 3 for
¢y > 1, where p(g,r,d) = g — (r + 1)(¢g — d + r) is the Brill-Noether
number.

If |H| is hyperelliptic, then E(Z, C) is not locally free if c; > 2. This
claim comes from the fact that E(Z, C) is locally free if and only if |Z|
is fixed point free on C.

Let N be {(Z,C)| Z is a 0-cycle of degree ¢z on a smooth curve C €
|H| with h%(C,0¢c(Z)) = 2 and h°(Iz(H)) = 1} C Sym®X x |H]|.

Then we can construct a vector bundle = on N x X such that 2|z ¢y« x
= E(Z,C) as in the previous case. By the universal property of the
coarse moduli space M, the bundle = induces a morphism,

g:N— M.

We will show that g((Z,C)) = g((Z’,C")) if and only if C = C" and Z
is linearly equivalent to Z’ on C. First we show that Oc(Z) = O¢(Z’)
implies E(Z,C) =2 E(Z',C). We follow the method of Tyurin exactly
[21]. The curve C' D Z defines a one dimensional space of sections
spanned by s € HO(Iz(C)) which lifts uniquely to a one-dimensional
subspace spanned by 5 € H%(E(Z,C)). Consider the linear span W =
(HY(Iz(H + K),3) ¢ H°(E(Z,C)) and the canonical homomorphism,
0— W®OX - E(Z,C) b Oc(Kc— Z) — 0.
Dualizing this, we get an exact sequence,
0— E(Z,C) - W' ®0x — 0c(Z) -0
and an isomorphism
W* = H%(Oc(2)),
since R%(E(Z,C)*) = RN E(Z,C)*) = h(E(Z,C)K)) = 0. To the
hyperplane H!(Iz(H + K)) C W there corresponds the one dimensional
space of sections spanned by s € H%(O¢(Z)) = W* such that (s)g = Z.
Next we consider a section s’ € H°(O¢(Z)) such that (s')o = Z’ and the
corresponding hyperplane V' C W. The canonical map yields the exact
triple ‘
0>V ®0x — E(Z,C)—Iz(H)—0
and this shows that E(Z,C) = E(Z',C), since dim Ext(Iz/(H),0Ox) =
1.
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Next we show the converse. The rank two bundles E(Z,C) = E(Z’,
C') = E has two non-proportional sections s and s’ with zeros,

(8)o = Z, (s')o = 2.

The restriction of the canonical map H%(E) ® Ox — E to the linear
span (s, s’) yields the following exact triple

0—(5,8Y®0x - E—L—0,

SuppL = C = C’' € |H|,
since h%(Iz(H)) = h®(Iz/(H)) = 1. Then L & O¢(Z) = Oc(Z').

So, this induces a map from N’ = {(L,C)|L € Pic®?(C), h%(C,L) =
2, C a smooth curve in |H|, h°(Iz(H)) = 1, where Z is a zero section
of L} to M. This is injective and the image is in Mg as an open and
dense subset in the closure M’ in M as was shown in theorem 1. So, this
completes the first part of the theorem.

For the second part we use the same method as in the previous the-
orem to conclude that E corresponding to a singular point is m,L with
L% =0. So, dim M = dim N must be 2c; — 3 > 0. This implies that for
a generic curve C € |H|, dim W (C) = p(c2 +1,1,¢3) = ca — 3. O

REMARK 1. We do not know whether or not M is irreducible, even
though we believe it.

REMARK 2. The corresponding component in the moduli space of
stable bundles on X is M%(2, 7 H,7*cy). (See chapter I.) Then M is
mapped to Mg—( by m*. The image of the bundle E(Z,C) € g(N) by =*
is in the branch locus if and only if O¢(Z) is a theta characteristic on
C(Oc(Z) =2 Oc(Kc—Z)). We expect that the intersection of the image
of the moduli space by pull back map with the fixed locus of involution
in [21] is of dim }(dimMx + 1).

REMARK 3. In theorem II, we assumed that H? > 6, so that cp > 3.
However, M is non-empty only if H? > 2(cz > 1). In the case H? = 2,
c2 = 1, this corresponds to the case of the exceptional bundle. For
H? =4, ¢y =2and H? =6, c; = 3, we will explain as examples.

EXAMPLE 1. (H? = 4, ¢; = 2) If |H| is non-hyperelliptic, then
M is just the locus of hyperelliptic curves in |H| = P2, since to each
hyperelliptic curve C we can associate a bundle uniquely determined by
the hyperelliptic system on C. The image of M by n* is one of the two
elliptic curves in M~ which determine the double covering of M% over
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P2. The moduli space of bundles with determinant H + K are mapped
to the other elliptic curve by n*.

If |H| is hyperelliptic, then M is birational to some moduli space of
bundles with ¢ = 0 and ¢z = 1. (See the remark 3 in chapter II.)

EXAMPLE 2. (H? = 6, c = 3) Every curve of genus 4 is trigonal.
It is known ([19]) that a non-hyperelliptic curve of genus 4 has exactly
two gi’s, D and K — D or one gi, D(~ K — D). So, if |H| is not
hyperelliptic, then M is birational to a double covering of P? = |H|
branched over the locus of curves which has a theta characteristic of
gi. If |H| is hyperelliptic, then it can be transformed to another moduli
space of bundles with ¢? = 2 and c; = 2.

IV. Remarks

(1) Qin’s result ([25]) shows that the birational type of the moduli
space of stable bundles of rank 2 on an Enriques surface is independent
of the choice of an ample divisor. In the case ¢; = 0, the moduli space
can be described in two different ways. The first one is to transform
to the cases (A) or (B) we described in the previous two chapters. The
second one is to follow the description of Friedman'’s result. (He assumed
that every fiber is irreducible, so that this corresponds to an unnodal
Enriques surface.)

(2) In both theorems, we assumed that X is unnodal. However, for a
non-ample divisor H on a nodal Enriques surface, our method does not
work automatically. There might be a transformation to another moduli
space of bundles whose determinant is ample with possibly different rank
using exceptional bundles of even rank ([23]).
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