Bull. Korean Math. Soc. 43 (2006), No. 2, pp. 389-393

SPECTRAL CONTINUITY OF ESSENTIALLY
p—~HYPONORMAL OPERATORS

AN-Hyun KiMm AND EUN-YOUNG KWON

ABSTRACT. In this paper it is shown that the spectrum o is con-
tinuous at every p-hyponormal operator when restricted to the set
of essentially p-hyponormal operators and moreover ¢ is contin-
uous when restricted to the set of compact perturbations of p-
hyponormal operators whose spectral pictures have no holes as-
sociated with the index zero.

The spectrum o can be viewed as a function whose domain consists
of operators and whose range consists of compact sets, equipped with
the Hausdorff metric, in the complex plane C. It is well-known that o
is upper semicontinuous, but ¢ is not continuous in general. In [12] it
was shown that o is continuous on the set of normal operators (also see
[7, Solution 105]). This argument can be easily extended to the set of
hyponormal operators. Also the continuity of o was considered in [4] and
[5]. Recently, in [10], it was shown that o~is continuous when restricted
to the set of p-hyponormal operators. However we don’t guarantee that
o is continuous on the set of compact perturbations of points of spectral
continuity since the spectrum can undergo a substantial change even
under rank one perturbations. In fact, ¢ need not be continuous at
rank-one perturbations of unitary operators. To see this, consider

_ (U itua-vu* _{(Uo
T"_(o o ) and T_<OU*)’

where U is the unilateral shift on ¢5. In this note we examine the
continuity of the spectrum for the set including compact perturbations
of p-hyponormal operators.
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Throughout this paper let ‘H be a complex Hilbert space, let L(H)
denote the algebra of bounded linear operators on H and let C(H) denote
the ideal of compact operators on H . If S is a compact subset of C,
we write iso S, accS and 7S for the isolated points, the accumulation
points, and the polynomially convex hull of S, respectively. If T € L(H)
write 0(T'), 0p(T), 0e(T), 01e(T), 01¢(T) and w(T') for the spectrum, the
point spectrum, the essential spectrum, the left essential spectrum, the
right essential spectrum, and the Weyl spectrum (= the set of A € C
for which T'— X is not Weyl, i.e., T — X is not Fredholm of index zero),
respectively, of T' (cf. [8]). If T € L(H), a hole in g.(T) is a bounded
component of C \ 0.(T") and a pseudohole in o.(T) is a component of
0e(T) \ 01e(T) or 0¢(T) \ 0re(T). The spectral picture of T, denoted
SP(T), is the structure consisting of the set o.(T), the collection of
holes and pseudoholes in 0.(T'), and the indices associated with those
holes and pseudoholes.

An operator T' € L(H) is called p-hyponormal if (T*T)? —(TT*)? > 0
(p > 0) (cf. [1], [2], [3]). If p = 1 then T is called hyponormal. Let A
denote a unital C*-algebra. An element a € U is called normal if a*a =
aa*; hyponormal if a*a > aa*; and p-hyponormal if (a*a)? > (aa*)? for
p>0. If p: A — L(H,) is an isometric *~homomorphism for a Hilbert
space H, and if a is a p-hyponormal element in 2 then we can easily see
that p(a) is a p~hyponormal operator on H,. Let 7 denote the canonical
map of L(H) onto the Calkin algebra £(H)/K(H), which is a unital C*-
algebra. An operator T' € L(H) is called essentially p—hyponormal if
7(T) is a p~hyponormal element in L(H)/K(H).

An operator T € L(H) is said to have the single valued extension
property (SVEP) if for every open set G C C, the only analytic function
f G — H satisfying (T — X\)f(A) =0 for all A € G is the zero function
on G. For example, every p-hyponormal operator has the SVEP because
if T is a p-hyponormal operator then T — \ has finite ascent for all A € C
([2, Theorem 4]), which implies that T" has the SVEP ([11, Proposition
1.8]). Recall also ([1]) that every p-hyponormal operator is reduced by
each of its eigenspaces.

Our main theorem is an extension of {10, Theorem].
THEOREM 1. The following operators T are points of spectral conti-
nuity when the function o is restricted to Pe(H):

(i) T is reduced by its finite-dimensional eigenspaces;
(ii) T has the SVEP;
(iii) T — p has finite ascent for all p € ¢,(T).
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Proof. Write PB.(H) for the set of essentially p-hyponormal opera-
tors. Suppose that T,T,, € B.(H), for n € Z,, are such that T,
converges to T in norm. If o : L(H)/K(H) — L(H,) is an isometric
s*—homomorphism for a Hilbert space H, then as we noticed in the pre-
ceding, o(n(T)) and o(n(T,)) (n € Z4) are p-hyponormal operators on
H, such that g(m(T},)) converges to o(w(T’)) in norm. Since o is continu-
ous on the set of all p-hyponormal operators (|10, Theorem)), it follows
that lim o(o(7(T,))) = o(e(n(T))). Since L(H)/K(H) and L(H,) are
both unital C*-algebras it follows from the ‘spectral permanence’ that

lim 0.(T,) = limo(m(T,)) = limo(o(n(Ty)))
=0 (o(n(T))) = o(x(T)) = oe(T)

So the essential spectrum o, is continuous when restricted to the set
Pe(H).

Now suppose that T, T € B.(H) (n € Z, ) are such that T}, converges
to T in norm. Since in general o is upper semicontinuous, that is,
limsup,, 0(T,,) C o(T), it suffices to show that o(7T) C liminf, o(T,)
whenever T satisfies the given condition. We split the proof into two
cases.

CastE 1 (A € isoo(T)). In this case we use an argument of Newburgh
[Ne, lemma 3]: if A € isoo(T') then for every neighborhood N'(A) of A
there exists an N € Z, such that n > N implies o(T,) NN(A) # 0.
This shows that X € liminf,, o(7},).

Cask 2 (X € acco(T)). We assume to the contrary that A ¢ liminf,, o
(T.). Then there exists a neighborhood A (X) of X such that does not
intersect infinitely many o(7},). Thus we can choose a subsequence
{Tn. }x of {Tn}n such that for some € > 0, dist(A, o(Ty,)) > € for all
k € Z,. Since evidently, dist(\, 0(Ty,)) < dist(A, 0e(Th,)) and o. is
continuous at T, it follows that T'— X is Fredholm. By the continuity of
the Fredholm index, we have that ind(T—A) = limg_, o0 ind(Ty, —A) =0,
which says that 7' — X is Weyl, i.e., A ¢ w(T).

Firstly, we suppose that T is reduced by its finite-dimensional eigen-
spaces. Let

M= \/{ker(T —p): 0<dimker(T — p) < co}.

By assumption, 90T reduces 7. Write

T = (Tl 0 ) MM — Mo ML,
0 T
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Then T3 is a normal operator and o(T2) = w(T2). Since o.(T1) = w(T1)
and )\ ¢ w(T) we can see that Ty — A is Weyl and T — X is invertible.
Since T} is normal it follows that A € isoo(T1). Therefore we have that
A € isoo(T), a contradiction.

Secondly, we suppose that T has the SVEP. Since A € o(T) \ w(T),
there exists a neighborhood G(X) of A such that for all u € G(A), T — 1
is Weyl but not invertible. Therefore A is an interior point of o,(T'), and
so T does not have the SVEP because every semi-Fredholm operator
whose point spectrum contains a neighborhood of zero does not have
the SVEP (see [6, Theorem 9]), a contradiction.

Thirdly, we suppose that 7' — u has finite ascent for all p € o, (7).
Since T — A is Weyl but not invertible, we have A\ € ¢,(T), and by
assumption 7' — X has finite ascent. Now observe that by the “Index
Product Theorem”

dim ker(T—\)"—dim(ran (T—\)")* = ind ((T—\)") = nind (T—X) = 0.

So if dimker(7" — A)” is constant then so is dim(ran (7' — A\)")+, which
shows that finite ascent forces both finite ascent and descent. Thus it
follows ([8, Theorem 9.7.6]) that T'— X is Fredholm and 7"— p is invertible
for sufficiently small |A— u| # 0, and hence X € isoo(T'), a contradiction.
This proves the theorem. ]

COROLLARY 2. The function o is continuous at every p-hyponormal
operator when restricted to the set of essentially p-hyponormal opera-
tors.

Proof. This follows at once from the second assertion of Theorem 1
together with a remark above Theorem 1. (]

COROLLARY 3. The function o is continuous when restricted to the
set Po(H) + K(H), where Po(H) denotes the set of p-hyponormal op-
erators whose spectral pictures have no holes associated with the index
Ze€ro.

Proof. Observe first that Po(H) + KL(H) contains only essentially p-
hyponormal operators. Now if SP(T") has no holes associated with the
index zero then so does SP(T + K) for every compact operator K since
SP(T + K) = SP(T). Thus if A € acco(T + K) then by the same
argument of Theorem 1 we have that A ¢ w(T + K); therefore A €
iso (T + K), a contradiction. This completes the proof. N
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COROLLARY 4. The function o is continuous on the set of essentially
p-hyponormal operators T satisfying o(T) = w(T).

Proof. This follows from a careful examination of the proof of Theo-
rem 1. O

Corollary 4 can easily be satisfied by “Toeplitz operators” since by
Coburn’s theorem, (T,,) = w(T,,) for every Toeplitz operator T,,. Thus
we recapture [9, Theorem 11]:

COROLLARY 5. The function o is continuous when restricted to the
set T = {T, : ¢ € PQC}, where PQC denotes the algebra generated
by piecewise continuous functions and quasicontinuous functions on the
unit circle.

Proof. This follows from the remark above Corollary 4 together with
the fact that if ¢ € PQC then T, is essentially normal. |
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