SPECTRAL CONTINUITY OF ESSENTIALLY p-HYPONORMAL OPERATORS

AN-HYUN KIM AND EUN-YOUNG KWON

ABSTRACT. In this paper it is shown that the spectrum σ is continuous at every p-hyponormal operator when restricted to the set of essentially p-hyponormal operators and moreover σ is continuous when restricted to the set of compact perturbations of p-hyponormal operators whose spectral pictures have no holes associated with the index zero.

The spectrum σ can be viewed as a function whose domain consists of operators and whose range consists of compact sets, equipped with the Hausdorff metric, in the complex plane \mathbf{C} . It is well-known that σ is upper semicontinuous, but σ is not continuous in general. In [12] it was shown that σ is continuous on the set of normal operators (also see [7, Solution 105]). This argument can be easily extended to the set of hyponormal operators. Also the continuity of σ was considered in [4] and [5]. Recently, in [10], it was shown that σ is continuous when restricted to the set of p-hyponormal operators. However we don't guarantee that σ is continuous on the set of compact perturbations of points of spectral continuity since the spectrum can undergo a substantial change even under rank one perturbations. In fact, σ need not be continuous at rank—one perturbations of unitary operators. To see this, consider

$$T_n = \begin{pmatrix} U & \frac{1}{n}(I - UU^*) \\ 0 & U^* \end{pmatrix}$$
 and $T = \begin{pmatrix} U & 0 \\ 0 & U^* \end{pmatrix}$,

where U is the unilateral shift on ℓ_2 . In this note we examine the continuity of the spectrum for the set including compact perturbations of p-hyponormal operators.

Received March 18, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A10, 47B20, 47B35.

Key words and phrases: spectrum, spectral radius, p-hyponormal operators, essentially p-hyponormal operators.

Throughout this paper let \mathcal{H} be a complex Hilbert space, let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} and let $\mathcal{K}(\mathcal{H})$ denote the ideal of compact operators on \mathcal{H} . If \mathbf{S} is a compact subset of \mathbf{C} , we write iso \mathbf{S} , acc \mathbf{S} and $\eta \, \mathbf{S}$ for the isolated points, the accumulation points, and the polynomially convex hull of \mathbf{S} , respectively. If $T \in \mathcal{L}(\mathcal{H})$ write $\sigma(T)$, $\sigma_p(T)$, $\sigma_e(T)$, $\sigma_{le}(T)$, $\sigma_{re}(T)$ and $\omega(T)$ for the spectrum, the point spectrum, the essential spectrum, the left essential spectrum, the right essential spectrum, and the Weyl spectrum (= the set of $\lambda \in \mathbf{C}$ for which $T - \lambda$ is not Weyl, i.e., $T - \lambda$ is not Fredholm of index zero), respectively, of T (cf. [8]). If $T \in \mathcal{L}(\mathcal{H})$, a hole in $\sigma_e(T)$ is a bounded component of $\mathbf{C} \setminus \sigma_e(T)$ and a pseudohole in $\sigma_e(T)$ is a component of $\sigma_e(T) \setminus \sigma_{le}(T)$ or $\sigma_e(T) \setminus \sigma_{re}(T)$. The spectral picture of T, denoted $\mathcal{SP}(T)$, is the structure consisting of the set $\sigma_e(T)$, the collection of holes and pseudoholes in $\sigma_e(T)$, and the indices associated with those holes and pseudoholes.

An operator $T \in \mathcal{L}(\mathcal{H})$ is called p-hyponormal if $(T^*T)^p - (TT^*)^p \geq 0$ (p>0) (cf. [1], [2], [3]). If p=1 then T is called hyponormal. Let \mathfrak{A} denote a unital C^* -algebra. An element $a \in \mathfrak{A}$ is called normal if $a^*a = aa^*$; hyponormal if $a^*a \geq aa^*$; and p-hyponormal if $(a^*a)^p \geq (aa^*)^p$ for p>0. If $\varrho: \mathfrak{A} \to \mathcal{L}(\mathcal{H}_\varrho)$ is an isometric *-homomorphism for a Hilbert space H_ϱ and if a is a p-hyponormal element in \mathfrak{A} then we can easily see that $\varrho(a)$ is a p-hyponormal operator on \mathcal{H}_ϱ . Let π denote the canonical map of $\mathcal{L}(\mathcal{H})$ onto the Calkin algebra $\mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$, which is a unital C^* -algebra. An operator $T \in \mathcal{L}(\mathcal{H})$ is called essentially p-hyponormal if $\pi(T)$ is a p-hyponormal element in $\mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$.

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to have the *single valued extension* property (SVEP) if for every open set $G \subset \mathbb{C}$, the only analytic function $f: G \to \mathcal{H}$ satisfying $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in G$ is the zero function on G. For example, every p-hyponormal operator has the SVEP because if T is a p-hyponormal operator then $T - \lambda$ has finite ascent for all $\lambda \in \mathbb{C}$ ([2, Theorem 4]), which implies that T has the SVEP ([11, Proposition 1.8]). Recall also ([1]) that every p-hyponormal operator is reduced by each of its eigenspaces.

Our main theorem is an extension of [10, Theorem].

THEOREM 1. The following operators T are points of spectral continuity when the function σ is restricted to $\mathfrak{P}_e(\mathcal{H})$:

- (i) T is reduced by its finite-dimensional eigenspaces;
- (ii) T has the SVEP;
- (iii) $T \mu$ has finite ascent for all $\mu \in \sigma_p(T)$.

Proof. Write $\mathfrak{P}_e(\mathcal{H})$ for the set of essentially p-hyponormal operators. Suppose that $T, T_n \in \mathfrak{P}_e(\mathcal{H})$, for $n \in \mathbb{Z}_+$, are such that T_n converges to T in norm. If $\varrho : \mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}_\varrho)$ is an isometric *-homomorphism for a Hilbert space H_ϱ then as we noticed in the preceding, $\varrho(\pi(T))$ and $\varrho(\pi(T_n))$ ($n \in \mathbb{Z}_+$) are p-hyponormal operators on \mathcal{H}_ϱ such that $\varrho(\pi(T_n))$ converges to $\varrho(\pi(T))$ in norm. Since σ is continuous on the set of all p-hyponormal operators ([10, Theorem]), it follows that $\lim \sigma(\varrho(\pi(T_n))) = \sigma(\varrho(\pi(T)))$. Since $\mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ and $\mathcal{L}(\mathcal{H}_\varrho)$ are both unital C^* -algebras it follows from the 'spectral permanence' that

$$\lim \sigma_e(T_n) = \lim \sigma(\pi(T_n)) = \lim \sigma(\varrho(\pi(T_n)))$$
$$= \sigma(\varrho(\pi(T))) = \sigma(\pi(T)) = \sigma_e(T).$$

So the essential spectrum σ_e is continuous when restricted to the set $\mathfrak{P}_e(\mathcal{H})$.

Now suppose that $T_n, T \in \mathfrak{P}_e(\mathcal{H})$ $(n \in \mathbb{Z}_+)$ are such that T_n converges to T in norm. Since in general σ is upper semicontinuous, that is, $\limsup_n \sigma(T_n) \subseteq \sigma(T)$, it suffices to show that $\sigma(T) \subseteq \liminf_n \sigma(T_n)$ whenever T satisfies the given condition. We split the proof into two cases.

Case 1 ($\lambda \in \text{iso } \sigma(T)$). In this case we use an argument of Newburgh [Ne, lemma 3]: if $\lambda \in \text{iso } \sigma(T)$ then for every neighborhood $\mathcal{N}(\lambda)$ of λ there exists an $N \in \mathbb{Z}_+$ such that n > N implies $\sigma(T_n) \cap \mathcal{N}(\lambda) \neq \emptyset$. This shows that $\lambda \in \liminf_n \sigma(T_n)$.

Case 2 ($\lambda \in \operatorname{acc} \sigma(T)$). We assume to the contrary that $\lambda \notin \liminf_n \sigma(T_n)$. Then there exists a neighborhood $\mathcal{N}(\lambda)$ of λ such that does not intersect infinitely many $\sigma(T_n)$. Thus we can choose a subsequence $\{T_{n_k}\}_k$ of $\{T_n\}_n$ such that for some $\epsilon > 0$, $\operatorname{dist}(\lambda, \sigma(T_{n_k})) > \epsilon$ for all $k \in \mathbb{Z}_+$. Since evidently, $\operatorname{dist}(\lambda, \sigma(T_{n_k})) \leq \operatorname{dist}(\lambda, \sigma_e(T_{n_k}))$ and σ_e is continuous at T, it follows that $T - \lambda$ is Fredholm. By the continuity of the Fredholm index, we have that $\operatorname{ind}(T - \lambda) = \lim_{k \to \infty} \operatorname{ind}(T_{n_k} - \lambda) = 0$, which says that $T - \lambda$ is Weyl, i.e., $\lambda \notin \omega(T)$.

Firstly, we suppose that T is reduced by its finite-dimensional eigenspaces. Let

$$\mathfrak{M} := \bigvee \big\{ \ker(T - \mu) : \ 0 < \dim \ker(T - \mu) < \infty \big\}.$$

By assumption, \mathfrak{M} reduces T. Write

$$T = \left(\begin{smallmatrix} T_1 & 0 \\ 0 & T_2 \end{smallmatrix} \right) : \mathfrak{M} \oplus \mathfrak{M}^\perp \to \mathfrak{M} \oplus \mathfrak{M}^\perp.$$

Then T_1 is a normal operator and $\sigma(T_2) = \omega(T_2)$. Since $\sigma_e(T_1) = \omega(T_1)$ and $\lambda \notin \omega(T)$ we can see that $T_1 - \lambda$ is Weyl and $T_2 - \lambda$ is invertible. Since T_1 is normal it follows that $\lambda \in \text{iso } \sigma(T_1)$. Therefore we have that $\lambda \in \text{iso } \sigma(T)$, a contradiction.

Secondly, we suppose that T has the SVEP. Since $\lambda \in \sigma(T) \setminus \omega(T)$, there exists a neighborhood $G(\lambda)$ of λ such that for all $\mu \in G(\lambda)$, $T - \mu$ is Weyl but not invertible. Therefore λ is an interior point of $\sigma_p(T)$, and so T does not have the SVEP because every semi-Fredholm operator whose point spectrum contains a neighborhood of zero does not have the SVEP (see [6, Theorem 9]), a contradiction.

Thirdly, we suppose that $T - \mu$ has finite ascent for all $\mu \in \sigma_p(T)$. Since $T - \lambda$ is Weyl but not invertible, we have $\lambda \in \sigma_p(T)$, and by assumption $T - \lambda$ has finite ascent. Now observe that by the "Index Product Theorem"

$$\dim \ker (T-\lambda)^n - \dim (\operatorname{ran} (T-\lambda)^n)^{\perp} = \operatorname{ind} ((T-\lambda)^n) = n \operatorname{ind} (T-\lambda) = 0.$$

So if dim $\ker(T-\lambda)^n$ is constant then so is dim $(\operatorname{ran}(T-\lambda)^n)^{\perp}$, which shows that finite ascent forces both finite ascent and descent. Thus it follows ([8, Theorem 9.7.6]) that $T-\lambda$ is Fredholm and $T-\mu$ is invertible for sufficiently small $|\lambda-\mu| \neq 0$, and hence $\lambda \in \operatorname{iso} \sigma(T)$, a contradiction. This proves the theorem.

COROLLARY 2. The function σ is continuous at every p-hyponormal operator when restricted to the set of essentially p-hyponormal operators.

Proof. This follows at once from the second assertion of Theorem 1 together with a remark above Theorem 1. \Box

COROLLARY 3. The function σ is continuous when restricted to the set $\mathfrak{P}_0(\mathcal{H}) + \mathcal{K}(\mathcal{H})$, where $\mathfrak{P}_0(\mathcal{H})$ denotes the set of p-hyponormal operators whose spectral pictures have no holes associated with the index zero.

Proof. Observe first that $\mathfrak{P}_0(\mathcal{H}) + \mathcal{K}(\mathcal{H})$ contains only essentially p-hyponormal operators. Now if $\mathcal{SP}(T)$ has no holes associated with the index zero then so does $\mathcal{SP}(T+K)$ for every compact operator K since $\mathcal{SP}(T+K) = \mathcal{SP}(T)$. Thus if $\lambda \in \operatorname{acc} \sigma(T+K)$ then by the same argument of Theorem 1 we have that $\lambda \notin \omega(T+K)$; therefore $\lambda \in \operatorname{iso}(T+K)$, a contradiction. This completes the proof.

COROLLARY 4. The function σ is continuous on the set of essentially p-hyponormal operators T satisfying $\sigma(T) = \omega(T)$.

Proof. This follows from a careful examination of the proof of Theorem 1. \Box

Corollary 4 can easily be satisfied by "Toeplitz operators" since by Coburn's theorem, $\sigma(T_{\varphi}) = \omega(T_{\varphi})$ for every Toeplitz operator T_{φ} . Thus we recapture [9, Theorem 11]:

COROLLARY 5. The function σ is continuous when restricted to the set $\mathfrak{T} = \{T_{\varphi} : \varphi \in PQC\}$, where PQC denotes the algebra generated by piecewise continuous functions and quasicontinuous functions on the unit circle.

Proof. This follows from the remark above Corollary 4 together with the fact that if $\varphi \in PQC$ then T_{φ} is essentially normal.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory 13 (1990), no. 3, 307–315.
- [2] M. Cho and T. Huruya, p-hyponormal operators for 0 , Comment. Math. Prace Mat.**33**(1993), 23-29.
- [3] M. Cho, M. Itoh, and S. Oshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), no. 2, 217-220.
- [4] J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator Theory 2 (1979), no. 2, 174-198.
- [5] D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153-4174.
- [6] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69.
- [7] P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.
- [8] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, Inc., New York, 1988.
- [9] I. S. Hwang and W. Y. Lee, On the continuity of spectra of Toeplitz operators, Arch. Math. (Basel) 70 (1998), no. 1, 66-73.
- [10] _____, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), no. 1, 151-157.
- [11] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336.
- [12] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176.

DEPARTMENT OF MATHEMATICS, CHANGWON NATIONAL UNIVERSITY, CHANGWON 641-773, KOREA

E-mail: ahkim@changwon.ac.kr key3506@changwon.ac.kr