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GENERALIZED TOEPLITZ ALGEBRA OF A
CERTAIN NON-AMENABLE SEMIGROUP

SUN YOUNG JANG

ABSTRACT. We analyze a detailed picture of the algebraic struc-
ture of C*-algebras generated by isometric representations of the
non-amenable semigroup P = {0,2,3,...,n,... }.

1. Introduction

Let S denote a countable discrete semigroup with unit e and B be a
unital C*-algebra. A map W : § — B,z — W, is called an isometric
homomorphism if W, = 1, W, is an isometry and Wy, = W, W, for all
z,y € S. If B is the C*-algebra B(H) of all bounded linear operators of
a non-zero Hilbert space H, we call (H, W) an isometric representation
of S.

If S is left-cancellative, then we can have a specific isometric rep-
resentation of S, called the left reqular isometric representation on the
Hilbert space 12(S). The left regular isometric representation £ : S —
B(1%(S)),x — L, is defined by the equation

f(y), if z=zy for some y € M,

(Laf)z) = { 0, if z¢ M.

In fact, when {0, | # € S} is the canonical orthonormal basis of the
Hilbert space [2(S) defined by

1, ifz=uy,
() ={

0, otherwise,
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we have that £;(6,) = 05, for all z,y € S.

In order to make things explicit, let us consider the semigroup N
of all natural numbers. The isometry £y of the left regular isometric
representation £ : N — B(I2(N)), z — L, is the unilateral shift of I2(N)
on the canonical orthonormal basis {4, | n € N}.

Among C*-algebras generated by isometries, the C*-algebra gener-
ated by the left regular isometric representation of a left cancellative
semigroup can be considered as the appropriate analogue for the Toeplitz
algebra. The C*-algebra generated by the left regular isometric repre-
sentation of a left cancellative semigroup S has several names. We shall
call it the reduced semigroup C*-algebra, and denote it C,,(S) as in the
paper [5].

Besides the reduced semigroup C*-algebra, we will consider the semi-
group C*-algebra introduced by G. J. Murphy [8]. The semigroup C*-
algebra is obtained by enveloping all isometric representations of S, and
is denoted by C*(S). From the construction of C*(S) we have naturally
a canonical isometric homomorphism V from S to C*(.5). It follows from
the definition of the semigroup C*-algebra it has the following universal
property: If V' is the canonical isometric homomorphism from S into
the semigroup C*-algebra C*(S), then for any isometric homomorphism
W from S into a unital C*-algebra B there exists a unique homomor-
phism from the semigroup C*-algebra C*(S) into the unital C*-algebra
B sending a canonical isometry V, to an isometry W, for each z € §.

Ever since L. A. Coburn proved his well-known theorem, which as-
serts that the C*-algebra generated by a non-unitary isometry on a
separable infinite dimensional Hilbert space does not depend on the par-
ticular choice of the isometry [1], many authors have taken an interest
in the generalization of Coburn’s theorem. It is sometimes called the
uniqueness property of the C*-algebras generated by isometries. If the
C*-algebras generated by isometries have the uniqueness property, the
structures of those C*-algebras are to some extent independent of the
choice of isometries on a Hilbert space. The uniqueness property of C*-
algebras generated by isometries describes when the reduced semigroup
C*-algebra C;,,(S) and the semigroup C*-algebra C*(S) are isomor-
phic or when the reduced semigroup C*-algebra C,;(S) has a universal
property for certain kinds of isometric representations of S [2, 3, 4, 6,
7]. As good examples of the uniqueness property, we note that all the
C*-algebras generated by the isometric representations of the semigroup
N of all natural numbers are isomorphic to the Toeplitz algebra. The
C*-algebras generated by one parameter semigroup of isometries and
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the Cuntz algebras are also remarkable examples of the C*-algebras of
isometries which have the uniqueness property.

A. Nica introduced the guasi-lattice group (G, S), the covariant isom-
etry representations of semigroups and the amenability problem of quasi
lattice ordered groups in order to find the condition that the reduced
semigroup C*-algebra C},,(.S) has a universal property for certain kinds
of isometric representations of S [9]. The partially ordered group (G, S)
is quasi-lattice ordered group if every finite subset of G with an upper
bound in S has a least upper bound in S. The amenability problem,
which asks when the left regular isometric representations have the uni-
versal property of the covariant isometric representations, was also inves-
tigated in [6]. The quasi-lattice ordered group is an appropriate concept
for the universal property of the reduced semigroup C*-algebras.

In this paper we show that the uniqueness property is much dependent
on the order structure of the semigroup S, by analyzing the structure
of the reduced semigroup C*-algebra C*_,(P) of P and the semigroup
C*-algebra C*(P) of P, where P = {0,2,3,...}.

The semigroup P = {0,2,3,...} is a generating subsemigroup of the
integer group Z. By Coburn’s result it is known that the reduced semi-
group C*-algebra C*(N) of N is isomorphic to the semigroup C*(N)
which is isomorphic to the Toeplitz algebra. We show that the reduced
semigroup C*-algebra C,,(P) is isomorphic to the Toeplitz algebra
C*(N), but we also show that C},,(P) is not isomorphic to C*(P) by
using the order structure of P in Proposition 2.7. Our semigroup P is
abelian and really simple one, but not quasi lattice ordered.

2. Main result

Let G be a countable discrete group and S a subsemigroup of G with
the unit e. We define an order on G as follows: Two elements  and y in
S are comparable when z € yS or y € £S. If z is contained in y§ , then
x is larger than y and we denote it by y < z. This relation makes (G, S)
a pre-ordered group. If the unit e of S is the only invertible element of
S, (G, S, <) is a partially ordered group.

We can identify a maximal and a minimal element in S in the following
sense: an element xg € S is maximal if and only if x5 < x implies that
T = 1o and an element z1 is minimal if and only if z < z; implies that
ry=zforzes.

The reduced semigroup C*-algebra C*(S) is generated by {L, | z €
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S}, where £ is the left regular isometric representation of S. In fact,
C*(S) is the closed linear span of {Ls, L}, - L}, Loy, | T € S} If
the semigroup S is the semigroup N of natural numbers, then C*(N) is
the Toeplitz algebra. So sometimes the reduced semigroup C*-algebra
C*(9) is called a generalized Toeplitz algebra.

PROPOSITION 2.1. If the unit of S is the only invertible element of
S, then {L,L; | z,y € S} is linearly independent.

Proof. First, we can see that Em£;(6y) =Jy for all 7,y € S, so L, L,
never can be zero for any x, y € S.

Suppose that there exist {A\; | A; € C, 1 < ¢ < n} and {(z;,y:) |
Ty Yi € Sa (xz)yl) 7é (x]7y_7) for 1 7é j) 1 S 'L’] < n} such that

z)‘ E% vi

We can divide {y; | 1 < ¢ < n} into two kinds of subsets; the one
consists of elements which are comparable with any other element of
{y: | 1 €4 < n} and the other is the rest.

Let y;, be the element of {y; | 1 < ¢ < n} which is not comparable
with any other element of {y; | 1 <4 < n}. Since Ly, L5, (8y, ) = 0z, for
Yi = Vi, We can have

Z)‘Exz Ys yzo):)\ll5zl1 +“'+>\lk5a:zk =0,

if yi, = yi for j = 1,...,k and {ly,..., Ik} C {1,2,...,n}. Since
z, # 11, if I, #1ls for 1 <r, s <k, we have A\;; =0 for j =14,... k.

Next, since {y1,...,yn} is finite, we can consider a minimal element
yi, of some chain of {y1,...,yn}. If we look at prudently the term
2 ALy, L, (8y, ), we can see that only the terms with y;, may not be
zero. So we have

Z)“Cm Ui yzl) _Aml(sxml +'”+)‘mp6zmp =0,

if Y, = ys, for j =1,... ,p and {my,ms,...,mp} C{1,2,...,n}.
By the similar computation as the above, we can see that A,,,; = 0 for
j=1,...,p. So we can exclude those terms in the two cases and have a
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reduced form of ]<:"1 ALy, £;j. Continuing this process in the reduced
form, we obtain that all \;’s are zero because {y1,...,yn} is finite. O

PROPOSITION 2.2, If the unit e of S is the only invertible element,
then C?,,(S) acts irreducibly on 12(S).

red

Proof. 1f the operator T in B(I*(S)) commutes with C?,,(S) and
[T:,yle,yes denotes the matrix representation of T with respect to the
canonical orthonormal basis {4, | z € S} of {?(5), then we have

Toyy = (T(8y), ) = (TL3(8y), be) = (T(de), £3(8))-

So Ty,y # 0 only when both z € yS and y € zS. Since the unit of S
is the only invertible element, it happens that both x € S and y € S
only when x = y. So T is a diagonal operator. Furthermore we have
Tye = Te, for all z € S since £, is an isometry. It follows that C?_;(S)
acts irreducibly on 12(S). O

If P = {0,2,3,...}, then the ordered group (Z, P) is a partially
ordered group, but the order structure of (Z, P) is different from that of
(Z,N).

If we put p, = £L,L£} and ¢, = [ — p, for each n € P, then the
projection p,, is the orthogonal projection onto the closed linear span of
{6n,0n+2, ...} and g, is the orthogonal projection onto the closed linear
span of {dg, 02,03, ...,0n—1}.

PROPOSITION 2.3. Let B be the C*-subalgebra of C}, ;(P) generated
by {pn | n € P}. Then the strong closure of B is a maximal abelian

von-Neumann algebra of B(12(P)).

Proof. Since p, and p,, commute for each n,m € P, B is abelian.
Furthermore, if we put § = dp + Y o, dx/2", then § is a cyclic vector
for B. If we put B’ = {x € B(I*(P)) | zy = yx for all y € B}, then B is
abelian. And we can see by an easy computation that § is a separating
vector for B. This implies that B’ is maximal abelian in B(I2(P)). Thus
from the maximal abelianess of B’ we have that B’ is equal to the double
commutant B” of B. Since B has the identity operator of B(I?(P)), B”
is the strong closure of B. O

The group C*-algebra of an abelian group is, of course, itself abelian
and so not very interesting from the point of view of C*-theory. But
the reduced semigroup C*-algebra and the semigroup C*-algebra may
not be abelian, and are moreover primitive for a large class of abelian
semigroups.
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PROPOSITION 2.4. The commutator ideal Z(C},;(P)) of C 4(P) is

red

the algebra KC(1(P)) of compact operators on the Hilbert space 2(P).
Proof. Since C*_ ,(P) is generated by L, and L3, it is enough to

red
see how these operators act on [2(P). The operator I — LoL} is of
finite rank, and so is contained in X(i?(P)). Therefore, K(I?(P)) and
the commutator ideal Z(C},;(P)) have non-empty intersection. Since

* +(P) acts irreducibly on [?(P), the commutator ideal Z(Cr,,(P))

contains the algebra X(12(P)) of compact operators [10, 6.1.4].
Furthermore C?,,(P)/K(1?(P)) is abelian because I — L3L3 and I —
L3L} are contained in K(I12(P)). Hence Z(C},,(P)) is equal to K(I%(P)).
(]

Though there are many interesting simple group C*-algebras, the
reduced semigroup C*-algebras are rarely simple for a large and natural
class of semigroups. In fact, there are many prime reduced semigroup
C*-algebras and it is still open when the reduced semigroup C*-algebra
is prime. We can see that C}',;(P) is prime from the Proposition 2.4.

The semigroup P has two generators, so apparently C,,(P) is gen-
erated by two non-unitary isometries. However, the following theorem

shows us that C,;(P) is generated by a non-unitary isometry.

THEOREM 2.5. The C*-algebra C;, ,(P) is generated by a single
non-unitary isometry.

Proof. The operator £}L3 acts on [2(P) as follows:

0, ifn=0,

L3L3(8,) =
£5(0n) { Spi1, ifn#0.

Hence £% L3 translates every element of the orthonormal basis {do, d2, 83,
...} of I2(P) except 8. Let K be the compact operator defined by

62, ifn=0,

K (o) { 0, ifn#0.

Put U = £3L3 + K. By Proposition 2.3, U is contained in C}_,;(P).
U*U is the identity operator on I2(P) because L3L2L3L3 is the projec-
tion onto the closed subspace spanned by {6, | n € P, n # 0}, K*K is
the projection onto the closed subspace Cédp and all other operators in
the terms of U*U are zero. Similarly, we see that UU™ is the projection
onto the closed subspace spanned by {d2,d3,...}. In fact the operator
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U sends dy to 42 and 6, to d,41 for n # 0. So the operator U is the
unilateral shift on [2(P) with respect to the canonical orthonormal basis
{6n | n € P}. Let T be the C*-subalgebra of C,,(P) generated by U.
If we consider the compact operators T} and 75 defined by

{-53, if n =0, {52, if n=0,

Ty(8,) = and  Tx(6,) =

0, otherwise, 0, otherwise,

then we can show that Lo = U2+T; +T5 because U2+Ty +T2(6n) = 6ni2
for each n € P. Similarly we can show that £3 = U3 + T3 4+ Ty where

—(54, ifn= 0,

0, otherwise,

(53, if n=0,

0, otherwise.

T3(6n) = { and  Tu(0n) = {

Since the algebra 7 contains the compact operator algebra K(12(P)),
the elements U? + T} + T, and U3 + T5 + Ty are contained in 7. Hence
we conclude that C},,(P) is same as the algebra T because C},,;(P) is

g

generated by Lo and Lj.
COROLLARY 2.6. C ,(P) is isomorphic to the Toeplitz algebra.

From the point of view of C*-algebras, amenability means that the
canonical coincidence of two kinds C*-algebras: One is the universal
object obtained by enveloping a certain class of representation and the
other is associated to a specific representations of the class.

A. Nica introduced the quasi-lattice ordered group (G, S), the covari-
ant isometric representations of semigroups and the amenability problem
of quasi-lattice ordered groups for the universal property of the reduced
semigroup C*-algebra C,,(S).

The partially ordered group (G, S) is said to be gquasi-lattice ordered
if the following is satisfied: If z1,3,...,2y, in G which have common
upper bounds in S for any n > 1, they also have a least common upper
bound in S.

The above condition can be expressed in another form consisting of
two conditions:

1. Any = in SS™! has a least upper bound in S.

2. Any s,t in S with the common upper bound has a least common
upper bound.

If (G, S) is a quasi-lattice ordered group and 1, zs,...,Z, in G have
a common upper bound in S, then their least common upper bound in
S will be denoted by o(z1,Z2,...,Zys).
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An isometric representation V of S on the Hilbert space H is said to
be covariant if

V(o(s,t)), if sand ¢t have common upper bound

v -{

0, otherwise.

It is clear that for the semigroup S of the quasi-lattice ordered group
(G, S) the left regular isometric representation £ of the semigroup S is
a covariant representation. The reduced semigroup C*-algebra C7,,(5)
naturally plays the role of reduced C*-algebra in the class of C*-algebras
of covariance isometric representations. Nica also constructed the full
C*-algebra CZ, (G, S) of the C*-algebras generated by enveloping con-
ariant representations of (G, S) [9].

The quasi-lattice ordered group (G,S) is amenable if the reduced
semigroup C*-algebra C,,(S) is isomorphic to C}, (G, S).

It is known that every abelian quasi-lattice ordered group is amenable.
Our semigroup P is very simple and abelian. But it is not quasi-lattice
ordered, because 2 and 3 in the semigroup P = {0,2,3,4,...} have
common upper bounds 5 and 6. Since 5 and 6 are not comparable, 2

and 3 does not have a least common upper bound.

PROPOSITION 2.7. The reduced semigroup C*-algebra C},,(P) is not
isomorphic to the semigroup C*-algebra C*(P).

Proof. The left regular isometric representation £ satisfies the rela-
tion:

(1) L3L5(I — L2L5)(T — L3L3) = 0.

Let W be the isometric representation of P defined by W,, = 8™ for
n=0,2,3,..., where S is the unilateral shift on {2(N). This represen-
tation does not satisfy the above relation, i.e.,

(2) S*283(I — 8§28*%)(1 — 838*3) # 0.

Let W be the C*-algebra generated by the isometric representation W
of P. Since C*(P) has the universal property, there is a homomorphism
from C*(P) to W sending V,, to W, for each n € P. But there does not
exist a homomorphism from C_,(P) to W sending £,, to W, for each

n € P because of equations (1) and (2). So the reduced semigroup C*-
algebra C7, ,(P) is not isomorphic to the semigroup C*-algebra C*(P).O]
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