GENERALIZED TOEPLITZ ALGEBRA OF A CERTAIN NON-AMENABLE SEMIGROUP

Sun Young Jang

ABSTRACT. We analyze a detailed picture of the algebraic structure of C^* -algebras generated by isometric representations of the non-amenable semigroup $P = \{0, 2, 3, \dots, n, \dots\}$.

1. Introduction

Let S denote a countable discrete semigroup with unit e and \mathcal{B} be a unital C^* -algebra. A map $W: S \to \mathcal{B}, x \mapsto W_x$ is called an *isometric homomorphism* if $W_e = 1$, W_x is an isometry and $W_{xy} = W_x W_y$ for all $x, y \in S$. If \mathcal{B} is the C^* -algebra $\mathcal{B}(H)$ of all bounded linear operators of a non-zero Hilbert space H, we call (H, W) an *isometric representation* of S.

If S is left-cancellative, then we can have a specific isometric representation of S, called the *left regular isometric representation* on the Hilbert space $l^2(S)$. The left regular isometric representation $\mathcal{L}: S \to \mathcal{B}(l^2(S)), x \mapsto \mathcal{L}_x$ is defined by the equation

$$(\mathcal{L}_x f)(z) = \begin{cases} f(y), & \text{if } z = xy \text{ for some } y \in M, \\ 0, & \text{if } z \notin xM. \end{cases}$$

In fact, when $\{\delta_x \mid x \in S\}$ is the canonical orthonormal basis of the Hilbert space $l^2(S)$ defined by

$$\delta_x(y) = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{otherwise,} \end{cases}$$

Received February 14, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 46L05, 47C15, 47B35.

Key words and phrases: isometric homomorphism, left regular isometric representation, reduced semigroup C^* -algebra, semigroup C^* -algebra, Toeplitz algebra.

This paper is partially supported by 2004 Research Fund of University of Ulsan.

we have that $\mathcal{L}_x(\delta_y) = \delta_{xy}$ for all $x, y \in S$.

In order to make things explicit, let us consider the semigroup \mathbb{N} of all natural numbers. The isometry \mathcal{L}_1 of the left regular isometric representation $\mathcal{L}: \mathbb{N} \to \mathcal{B}(l^2(\mathbb{N})), x \mapsto \mathcal{L}_x$ is the unilateral shift of $l^2(\mathbb{N})$ on the canonical orthonormal basis $\{\delta_n \mid n \in \mathbb{N}\}.$

Among C^* -algebras generated by isometries, the C^* -algebra generated by the left regular isometric representation of a left cancellative semigroup can be considered as the appropriate analogue for the Toeplitz algebra. The C^* -algebra generated by the left regular isometric representation of a left cancellative semigroup S has several names. We shall call it the reduced semigroup C^* -algebra, and denote it $C^*_{red}(S)$ as in the paper [5].

Besides the reduced semigroup C^* -algebra, we will consider the semigroup C^* -algebra introduced by G. J. Murphy [8]. The semigroup C^* -algebra is obtained by enveloping all isometric representations of S, and is denoted by $C^*(S)$. From the construction of $C^*(S)$ we have naturally a canonical isometric homomorphism V from S to $C^*(S)$. It follows from the definition of the semigroup C^* -algebra it has the following universal property: If V is the canonical isometric homomorphism from S into the semigroup C^* -algebra $C^*(S)$, then for any isometric homomorphism W from S into a unital C^* -algebra S there exists a unique homomorphism from the semigroup S-algebra S-algeb

Ever since L. A. Coburn proved his well-known theorem, which asserts that the C^* -algebra generated by a non-unitary isometry on a separable infinite dimensional Hilbert space does not depend on the particular choice of the isometry [1], many authors have taken an interest in the generalization of Coburn's theorem. It is sometimes called the uniqueness property of the C^* -algebras generated by isometries. If the C^* -algebras generated by isometries have the uniqueness property, the structures of those C^* -algebras are to some extent independent of the choice of isometries on a Hilbert space. The uniqueness property of C^* algebras generated by isometries describes when the reduced semigroup C^* -algebra $C^*_{red}(S)$ and the semigroup C^* -algebra $C^*(S)$ are isomorphic or when the reduced semigroup C^* -algebra $C^*_{red}(S)$ has a universal property for certain kinds of isometric representations of S [2, 3, 4, 6, 7]. As good examples of the uniqueness property, we note that all the C^* -algebras generated by the isometric representations of the semigroup N of all natural numbers are isomorphic to the Toeplitz algebra. The C^* -algebras generated by one parameter semigroup of isometries and

the Cuntz algebras are also remarkable examples of the C^* -algebras of isometries which have the uniqueness property.

A. Nica introduced the guasi-lattice group (G, S), the covariant isometry representations of semigroups and the amenability problem of quasi-lattice ordered groups in order to find the condition that the reduced semigroup C^* -algebra $C^*_{red}(S)$ has a universal property for certain kinds of isometric representations of S [9]. The partially ordered group (G, S) is quasi-lattice ordered group if every finite subset of G with an upper bound in S has a least upper bound in S. The amenability problem, which asks when the left regular isometric representations have the universal property of the covariant isometric representations, was also investigated in [6]. The quasi-lattice ordered group is an appropriate concept for the universal property of the reduced semigroup C^* -algebras.

In this paper we show that the uniqueness property is much dependent on the order structure of the semigroup S, by analyzing the structure of the reduced semigroup C^* -algebra $C^*_{red}(P)$ of P and the semigroup C^* -algebra $C^*(P)$ of P, where $P = \{0, 2, 3, \dots\}$.

The semigroup $P = \{0, 2, 3, \dots\}$ is a generating subsemigroup of the integer group \mathbb{Z} . By Coburn's result it is known that the reduced semigroup C^* -algebra $C^*(\mathbb{N})$ of \mathbb{N} is isomorphic to the semigroup $C^*(\mathbb{N})$ which is isomorphic to the Toeplitz algebra. We show that the reduced semigroup C^* -algebra $C^*_{red}(P)$ is isomorphic to the Toeplitz algebra $C^*(\mathbb{N})$, but we also show that $C^*_{red}(P)$ is not isomorphic to $C^*(P)$ by using the order structure of P in Proposition 2.7. Our semigroup P is abelian and really simple one, but not quasi lattice ordered.

2. Main result

Let G be a countable discrete group and S a subsemigroup of G with the unit e. We define an order on G as follows: Two elements x and y in S are comparable when $x \in yS$ or $y \in xS$. If x is contained in yS, then x is larger than y and we denote it by $y \leq x$. This relation makes (G,S) a pre-ordered group. If the unit e of S is the only invertible element of S, (G,S,\leq) is a partially ordered group.

We can identify a maximal and a minimal element in S in the following sense: an element $x_0 \in S$ is maximal if and only if $x_0 \le x$ implies that $x = x_0$ and an element x_1 is minimal if and only if $x \le x_1$ implies that $x_1 = x$ for $x \in S$.

The reduced semigroup C^* -algebra $C^*(S)$ is generated by $\{\mathcal{L}_x \mid x \in \mathcal{L}_x \mid x \in \mathcal{L}_x$

S}, where \mathcal{L} is the left regular isometric representation of S. In fact, $C^*(S)$ is the closed linear span of $\{\mathcal{L}_{x_1}\mathcal{L}_{x_2}^*\cdots\mathcal{L}_{x_{2k}}^*\mathcal{L}_{x_{2k+1}}\mid x_i\in S\}$. If the semigroup S is the semigroup \mathbb{N} of natural numbers, then $C^*(\mathbb{N})$ is the Toeplitz algebra. So sometimes the reduced semigroup C^* -algebra $C^*(S)$ is called a generalized Toeplitz algebra.

PROPOSITION 2.1. If the unit of S is the only invertible element of S, then $\{\mathcal{L}_x\mathcal{L}_y^* \mid x,y \in S\}$ is linearly independent.

Proof. First, we can see that $\mathcal{L}_x \mathcal{L}_y^*(\delta_y) = \delta_x$ for all $x, y \in S$, so $\mathcal{L}_x \mathcal{L}_y^*$ never can be zero for any $x, y \in S$.

Suppose that there exist $\{\lambda_i \mid \lambda_i \in \mathbb{C}, 1 \leq i \leq n\}$ and $\{(x_i, y_i) \mid x_i, y_i \in S, (x_i, y_i) \neq (x_j, y_j) \text{ for } i \neq j, 1 \leq i, j \leq n\}$ such that

$$\sum_{i=1}^{n} \lambda_i \mathcal{L}_{x_i} \mathcal{L}_{y_i}^* = 0.$$

We can divide $\{y_i \mid 1 \leq i \leq n\}$ into two kinds of subsets; the one consists of elements which are comparable with any other element of $\{y_i \mid 1 \leq i \leq n\}$ and the other is the rest.

Let y_{i_0} be the element of $\{y_i \mid 1 \leq i \leq n\}$ which is not comparable with any other element of $\{y_i \mid 1 \leq i \leq n\}$. Since $\mathcal{L}_{x_i}\mathcal{L}_{y_i}^*(\delta_{y_{i_0}}) = \delta_{x_i}$ for $y_i = y_{i_0}$, we can have

$$\sum_{i=1}^n \lambda_i \mathcal{L}_{x_i} \mathcal{L}_{y_i}^* (\delta_{y_{i_0}}) = \lambda_{l_1} \delta_{x_{l_1}} + \dots + \lambda_{l_k} \delta_{x_{l_k}} = 0,$$

if $y_{l_j} = y_{i_0}$ for $j = 1, \ldots, k$ and $\{l_1, \ldots, l_k\} \subset \{1, 2, \ldots, n\}$. Since $x_{l_r} \neq x_{l_s}$ if $l_r \neq l_s$ for $1 \leq r, s \leq k$, we have $\lambda_{l_j} = 0$ for $j = i, \ldots, k$.

Next, since $\{y_1, \ldots, y_n\}$ is finite, we can consider a minimal element y_{i_1} of some chain of $\{y_1, \ldots, y_n\}$. If we look at prudently the term $\sum \lambda_i \mathcal{L}_{x_i} \mathcal{L}_{y_i}^*(\delta_{y_{i_1}})$, we can see that only the terms with y_{i_1} may not be zero. So we have

$$\sum_{i=1}^n \lambda_i \mathcal{L}_{x_i} \mathcal{L}_{y_i}^*(\delta_{y_{i_1}}) = \lambda_{m_1} \delta_{x_{m_1}} + \dots + \lambda_{m_p} \delta_{x_{m_p}} = 0,$$

if $y_{m_j} = y_{i_1}$ for $j = 1, \ldots, p$ and $\{m_1, m_2, \ldots, m_p\} \subset \{1, 2, \ldots, n\}$. By the similar computation as the above, we can see that $\lambda_{m_j} = 0$ for $j = 1, \ldots, p$. So we can exclude those terms in the two cases and have a reduced form of $\sum_{j=1}^{n} \lambda_j \mathcal{L}_{x_j} \mathcal{L}_{y_j}^*$. Continuing this process in the reduced form, we obtain that all λ_i 's are zero because $\{y_1, \ldots, y_n\}$ is finite. \square

PROPOSITION 2.2. If the unit e of S is the only invertible element, then $C^*_{red}(S)$ acts irreducibly on $l^2(S)$.

Proof. If the operator T in $B(l^2(S))$ commutes with $C^*_{red}(S)$ and $[T_{x,y}]_{x,y\in S}$ denotes the matrix representation of T with respect to the canonical orthonormal basis $\{\delta_x \mid x\in S\}$ of $l^2(S)$, then we have

$$T_{x,y} = \langle T(\delta_y), \delta_x \rangle = \langle T\mathcal{L}_x^*(\delta_y), \delta_e \rangle = \langle T(\delta_e), \mathcal{L}_y^*(\delta_x) \rangle.$$

So $T_{x,y} \neq 0$ only when both $x \in yS$ and $y \in xS$. Since the unit of S is the only invertible element, it happens that both $x \in yS$ and $y \in xS$ only when x = y. So T is a diagonal operator. Furthermore we have $T_{x,x} = T_{e,e}$ for all $x \in S$ since \mathcal{L}_x is an isometry. It follows that $C^*_{red}(S)$ acts irreducibly on $l^2(S)$.

If $P = \{0, 2, 3, ...\}$, then the ordered group (\mathbb{Z}, P) is a partially ordered group, but the order structure of (\mathbb{Z}, P) is different from that of (\mathbb{Z}, \mathbb{N}) .

If we put $p_n = \mathcal{L}_n \mathcal{L}_n^*$ and $q_n = I - p_n$ for each $n \in P$, then the projection p_n is the orthogonal projection onto the closed linear span of $\{\delta_n, \delta_{n+2}, \ldots\}$ and q_n is the orthogonal projection onto the closed linear span of $\{\delta_0, \delta_2, \delta_3, \ldots, \delta_{n-1}\}$.

PROPOSITION 2.3. Let \mathcal{B} be the C^* -subalgebra of $C^*_{red}(P)$ generated by $\{p_n \mid n \in P\}$. Then the strong closure of \mathcal{B} is a maximal abelian von-Neumann algebra of $\mathcal{B}(l^2(P))$.

Proof. Since p_n and p_m commute for each $n, m \in P$, \mathcal{B} is abelian. Furthermore, if we put $\delta = \delta_0 + \sum_{k=2}^{\infty} \delta_k/2^k$, then δ is a cyclic vector for \mathcal{B} . If we put $\mathcal{B}' = \{x \in \mathcal{B}(l^2(P)) \mid xy = yx \text{ for all } y \in \mathcal{B}\}$, then \mathcal{B} is abelian. And we can see by an easy computation that δ is a separating vector for \mathcal{B} . This implies that \mathcal{B}' is maximal abelian in $\mathcal{B}(l^2(P))$. Thus from the maximal abelianess of \mathcal{B}' we have that \mathcal{B}' is equal to the double commutant \mathcal{B}'' of \mathcal{B} . Since \mathcal{B} has the identity operator of $\mathcal{B}(l^2(P))$, \mathcal{B}'' is the strong closure of \mathcal{B} .

The group C^* -algebra of an abelian group is, of course, itself abelian and so not very interesting from the point of view of C^* -theory. But the reduced semigroup C^* -algebra and the semigroup C^* -algebra may not be abelian, and are moreover primitive for a large class of abelian semigroups.

PROPOSITION 2.4. The commutator ideal $\mathcal{Z}(C^*_{red}(P))$ of $C^*_{red}(P)$ is the algebra $\mathcal{K}(l^2(P))$ of compact operators on the Hilbert space $l^2(P)$.

Proof. Since $C_{red}^*(P)$ is generated by \mathcal{L}_2 and \mathcal{L}_3 , it is enough to see how these operators act on $l^2(P)$. The operator $I - \mathcal{L}_2\mathcal{L}_2^*$ is of finite rank, and so is contained in $\mathcal{K}(l^2(P))$. Therefore, $\mathcal{K}(l^2(P))$ and the commutator ideal $\mathcal{Z}(C_{red}^*(P))$ have non-empty intersection. Since $C_{red}^*(P)$ acts irreducibly on $l^2(P)$, the commutator ideal $\mathcal{Z}(C_{red}^*(P))$ contains the algebra $\mathcal{K}(l^2(P))$ of compact operators [10, 6.1.4].

Furthermore $C_{red}^*(P)/\mathcal{K}(l^2(P))$ is abelian because $I - \mathcal{L}_2\mathcal{L}_2^*$ and $I - \mathcal{L}_3\mathcal{L}_3^*$ are contained in $\mathcal{K}(l^2(P))$. Hence $\mathcal{Z}(C_{red}^*(P))$ is equal to $\mathcal{K}(l^2(P))$.

Though there are many interesting simple group C^* -algebras, the reduced semigroup C^* -algebras are rarely simple for a large and natural class of semigroups. In fact, there are many prime reduced semigroup C^* -algebras and it is still open when the reduced semigroup C^* -algebra is prime. We can see that $C^*_{red}(P)$ is prime from the Proposition 2.4.

The semigroup P has two generators, so apparently $C^*_{red}(P)$ is generated by two non-unitary isometries. However, the following theorem shows us that $C^*_{red}(P)$ is generated by a non-unitary isometry.

Theorem 2.5. The C^* -algebra $C^*_{red}(P)$ is generated by a single non-unitary isometry.

Proof. The operator $\mathcal{L}_2^*\mathcal{L}_3$ acts on $l^2(P)$ as follows:

$$\mathcal{L}_{2}^{*}\mathcal{L}_{3}(\delta_{n}) = \begin{cases} 0, & \text{if } n = 0, \\ \delta_{n+1}, & \text{if } n \neq 0. \end{cases}$$

Hence $\mathcal{L}_2^*\mathcal{L}_3$ translates every element of the orthonormal basis $\{\delta_0, \delta_2, \delta_3, \ldots\}$ of $l^2(P)$ except δ_0 . Let K be the compact operator defined by

$$K(\delta_n) = \begin{cases} \delta_2, & \text{if } n = 0, \\ 0, & \text{if } n \neq 0. \end{cases}$$

Put $U = \mathcal{L}_2^* \mathcal{L}_3 + K$. By Proposition 2.3, U is contained in $C_{red}^*(P)$. U^*U is the identity operator on $l^2(P)$ because $\mathcal{L}_3^* \mathcal{L}_2 \mathcal{L}_2^* \mathcal{L}_3$ is the projection onto the closed subspace spanned by $\{\delta_n \mid n \in P, n \neq 0\}$, K^*K is the projection onto the closed subspace $\mathbb{C}\delta_0$ and all other operators in the terms of U^*U are zero. Similarly, we see that UU^* is the projection onto the closed subspace spanned by $\{\delta_2, \delta_3, \dots\}$. In fact the operator

U sends δ_0 to δ_2 and δ_n to δ_{n+1} for $n \neq 0$. So the operator U is the unilateral shift on $l^2(P)$ with respect to the canonical orthonormal basis $\{\delta_n \mid n \in P\}$. Let \mathcal{T} be the C^* -subalgebra of $C^*_{red}(P)$ generated by U. If we consider the compact operators T_1 and T_2 defined by

$$T_1(\delta_n) = \begin{cases} -\delta_3, & \text{if } n = 0, \\ 0, & \text{otherwise,} \end{cases}$$
 and $T_2(\delta_n) = \begin{cases} \delta_2, & \text{if } n = 0, \\ 0, & \text{otherwise,} \end{cases}$

then we can show that $\mathcal{L}_2 = U^2 + T_1 + T_2$ because $U^2 + T_1 + T_2(\delta_n) = \delta_{n+2}$ for each $n \in P$. Similarly we can show that $\mathcal{L}_3 = U^3 + T_3 + T_4$ where

$$T_3(\delta_n) = \begin{cases} -\delta_4, & \text{if } n = 0, \\ 0, & \text{otherwise,} \end{cases}$$
 and $T_4(\delta_n) = \begin{cases} \delta_3, & \text{if } n = 0, \\ 0, & \text{otherwise.} \end{cases}$

Since the algebra \mathcal{T} contains the compact operator algebra $\mathcal{K}(l^2(P))$, the elements $U^2 + T_1 + T_2$ and $U^3 + T_3 + T_4$ are contained in \mathcal{T} . Hence we conclude that $C^*_{red}(P)$ is same as the algebra \mathcal{T} because $C^*_{red}(P)$ is generated by \mathcal{L}_2 and \mathcal{L}_3 .

Corollary 2.6. $C^*_{red}(P)$ is isomorphic to the Toeplitz algebra.

From the point of view of C^* -algebras, amenability means that the canonical coincidence of two kinds C^* -algebras: One is the universal object obtained by enveloping a certain class of representation and the other is associated to a specific representations of the class.

A. Nica introduced the quasi-lattice ordered group (G, S), the covariant isometric representations of semigroups and the amenability problem of quasi-lattice ordered groups for the universal property of the reduced semigroup C^* -algebra $C^*_{red}(S)$.

The partially ordered group (G, S) is said to be *quasi-lattice ordered* if the following is satisfied: If x_1, x_2, \ldots, x_n in G which have common upper bounds in S for any $n \geq 1$, they also have a least common upper bound in S.

The above condition can be expressed in another form consisting of two conditions:

- 1. Any x in SS^{-1} has a least upper bound in S.
- 2. Any s,t in S with the common upper bound has a least common upper bound.

If (G, S) is a quasi-lattice ordered group and x_1, x_2, \ldots, x_n in G have a common upper bound in S, then their least common upper bound in S will be denoted by $\sigma(x_1, x_2, \ldots, x_n)$.

An isometric representation V of S on the Hilbert space H is said to be covariant if

$$V(s)V(t) = \begin{cases} V(\sigma(s,t)), & \text{if } s \text{ and } t \text{ have common upper bound} \\ 0, & \text{otherwise.} \end{cases}$$

It is clear that for the semigroup S of the quasi-lattice ordered group (G,S) the left regular isometric representation \mathcal{L} of the semigroup S is a covariant representation. The reduced semigroup C^* -algebra $C^*_{red}(S)$ naturally plays the role of reduced C^* -algebra in the class of C^* -algebras of covariance isometric representations. Nica also constructed the full C^* -algebra $C^*_{cov}(G,S)$ of the C^* -algebras generated by enveloping conariant representations of (G,S) [9].

The quasi-lattice ordered group (G, S) is amenable if the reduced semigroup C^* -algebra $C^*_{red}(S)$ is isomorphic to $C^*_{cov}(G, S)$.

It is known that every abelian quasi-lattice ordered group is amenable. Our semigroup P is very simple and abelian. But it is not quasi-lattice ordered, because 2 and 3 in the semigroup $P = \{0, 2, 3, 4, ...\}$ have common upper bounds 5 and 6. Since 5 and 6 are not comparable, 2 and 3 does not have a least common upper bound.

Proposition 2.7. The reduced semigroup C^* -algebra $C^*_{red}(P)$ is not isomorphic to the semigroup C^* -algebra $C^*(P)$.

Proof. The left regular isometric representation $\mathcal L$ satisfies the relation:

(1)
$$\mathcal{L}_2^* \mathcal{L}_3 (I - \mathcal{L}_2 \mathcal{L}_2^*) (I - \mathcal{L}_3 \mathcal{L}_3^*) = 0.$$

Let W be the isometric representation of P defined by $W_n = \mathcal{S}^n$ for $n = 0, 2, 3, \ldots$, where \mathcal{S} is the unilateral shift on $l^2(\mathbb{N})$. This representation does not satisfy the above relation, i.e.,

(2)
$$S^{*2}S^3(I - S^2S^{*2})(I - S^3S^{*3}) \neq 0.$$

Let W be the C^* -algebra generated by the isometric representation W of P. Since $C^*(P)$ has the universal property, there is a homomorphism from $C^*(P)$ to W sending V_n to W_n for each $n \in P$. But there does not exist a homomorphism from $C^*_{red}(P)$ to W sending \mathcal{L}_n to W_n for each $n \in P$ because of equations (1) and (2). So the reduced semigroup C^* -algebra $C^*_{red}(P)$ is not isomorphic to the semigroup C^* -algebra $C^*(P)$. \square

References

- L. A. Coburn, The C*-algebra generated by an isometry, I, Bull. Amer. Math. Soc. 73 (1967), 722-726; II, Trans. Amer. Math. Soc. 137 (1969), 211-217.
- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173-185.
- [3] K. R. Davidson and D. R. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), no. 2, 275-303.
- [4] R. G. Douglas, On the C*-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143-151.
- [5] S. Y. Jang, Reduced crossed products by semigroups of automorphisms, J. Korean Math. Soc. 36 (1999), no. 1, 97-107.
- [6] M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (1996), no. 2, 415-440.
- [7] P. S. Muhly, A structure theory for isometric representations of a class of semigroups, J. Reine Angew. Math. 255 (1972), 135-154.
- [8] G. J. Murphy, Crossed products of C*-algebras by semigroups of automorphisms, Proc. London Math. Soc. (3) 68 (1994), no. 2, 423-448.
- A. Nica, C*-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), no. 1, 17-52.
- [10] G. K. Pedersen, C*-algebras and their automorphism groups, London Mathematical Society Monograph 14, Academic Press, London, 1979.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULSAN, ULSAN 680-748, KOREA *E-mail*: jsym@ulsan.ac.kr