ON SOLVABILITY AND ALGORITHM OF GENERAL STRONGLY NONLINEAR VARIATIONAL-LIKE INEQUALITIES

ZEQING LIU, JUHE SUN, SOO HAK SHIM, AND SHIN MIN KANG

ABSTRACT. In this paper, a new class of general strongly nonlinear variational-like inequalities was introduced and studied. The existence and uniqueness of solutions and a new iterative algorithm for the general strongly nonlinear variational-like inequality are established and suggested, respectively. The convergence criteria of the iterative sequence generated by the iterative algorithm are also given.

1. Introduction

It is known that an important and useful generalization of variational inequalities is variational-like inequality [1]–[33]. Recently, by using the Berge maximum theorem, Tian [26] and Yao [32] studied some mixed variational-like inequalities, Huang and Deng [8] extended the auxiliary principle technique to study a class of generalized strongly nonlinear mixed variational-like inequalities in Hilbert spaces. Ding [4], [5] and others introduced and studied some classes of nonlinear variational-like inequalities in reflexive Banach spaces. Verma [27]–[31] discussed some classes of variational inequalities involving various nonlinear monotone operators in Hilbert spaces.

In this paper, we introduce and study a new class of general strongly nonlinear variational-like inequalities. The existence and uniqueness of solutions and a new iterative algorithm for the general strongly nonlinear

Received January 11, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 47J20, 49J40.

Key words and phrases: general strongly nonlinear variational-like inequality, existence and uniqueness, contraction mapping.

This work was supported by the Science Research Foundation of Educational Department of Liaoning Province (2004C063) and Korea Research Foundation Grant (KRF-2003-005-C00013).

variational-like inequality are proved and suggested, respectively. The convergence criteria of the sequence generated by the iterative algorithm are given.

2. Preliminaries

Let H be a real Hilbert space endowed with an inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. Let K be a nonempty closed convex subset of H, A, C, $F: K \to H$, N, $M: H \times H \to H$ and $\eta: K \times K \to H$ be mappings, and $f: K \to (-\infty, \infty]$ be a real functional. Suppose that $a: H \times H \to (-\infty, \infty)$ is a coercive continuous bilinear form, that is, there exist positive constants c and d such that

(C1)
$$a(v, v) \ge c||v||^2, \forall v \in H;$$

(C2)
$$a(u, v) \le d||u|| ||v||, \forall u, v \in H.$$

Clearly, c < d.

We consider the following general strongly nonlinear variational-like inequality problem:

Find $u \in K$ such that

(2.1)
$$a(u, v - u) + f(v) - f(u)$$

$$\geq \langle N(Au, Cu) - M(Eu, Fu), \eta(v, u) \rangle, \quad \forall v \in K.$$

Special Cases

(A) If N(Au, Cu) = Au - Cu, a(u, v) = 0 and M(Eu, Fu) = 0 for all $u, v \in K$, then the general strongly nonlinear variational-like inequality (2.1) is equivalent to finding $u \in K$ such that

(2.2)
$$\langle Cu - Au, \eta(v, u) \rangle \ge f(u) - f(v), \quad \forall v \in K,$$

which was introduced and studied by Ding [4].

(B) If N(Au, Cu) = Au - Cu, a(u, v) = 0, M(Eu, Fu) = 0 and $\eta(u, v) = gu - gv$ for all $u, v \in K$, then the general strongly nonlinear variational-like inequality (2.1) is equivalent to finding $u \in K$ such that

(2.3)
$$\langle Cu - Au, gv - gu \rangle \ge f(u) - f(v), \quad \forall v \in K,$$

which was studied by Yao [32].

DEFINITION 2.1. Let $A:K\to H,\,N:H\times H\to H$ and $\eta:K\times K\to H$ be mappings.

(1) A is said to be Lipschitz continuous with constant α if there exists a constant $\alpha > 0$ such that

$$||Au - Av|| \le \alpha ||u - v||, \quad \forall u, v \in K.$$

(2) N is said to be Lipschitz continuous with constant β in the first argument if there exists a constant $\beta > 0$ such that

$$||N(u, w) - N(v, w)|| \le \beta ||u - v||, \quad \forall u, v, w \in H.$$

(3) N is said to be *strongly monotone* with constant γ with respect to A in the second argument if

$$\langle N(w, Au) - N(w, Av), u - v \rangle \ge \gamma \|u - v\|^2, \quad \forall u, v \in K, \ w \in H.$$

(4) N is said to be η -antimonotone with respect to A in the first argument if

$$\langle N(Au, w) - N(Av, w), \eta(u, v) \rangle \le 0, \quad \forall u, v \in K, \ w \in H.$$

(5) N is said to be η -strongly monotone with constant ξ with respect to A in the first argument if there exists a constant $\xi > 0$ such that

$$\langle N(Au, w,) - N(Av, w), \eta(u, v) \rangle \ge \xi ||u - v||^2, \quad \forall u, v \in K, \ w \in H.$$

(6) N is said to be η -relaxed Lipschitz with constant ζ with respect to A in the second argument if there exists a constant $\zeta > 0$ such that

$$\langle N(w, Au) - N(w, Av), \eta(u, v) \rangle \le -\zeta ||u - v||^2, \quad \forall u, v \in K, \ w \in H.$$

(7) η is said to be *Lipschitz continuous* with constant δ if there exists a constant $\delta > 0$ such that

$$\|\eta(u,v)\| \le \delta \|u-v\|, \quad \forall u,v \in K.$$

(8) η is said to be *strongly monotone* with constant ω if there exists a constant $\omega > 0$ such that

$$\langle u - v, \eta(u, v) \rangle \ge \omega ||u - v||^2, \quad \forall u, v \in K.$$

Similarly, we can define the Lipschitz continuity of N in the second argument.

LEMMA 2.1. ([1], [2]) Let X be a nonempty closed convex subset of a Hausdorff linear topological space E, and $\phi, \psi : X \times X \to R$ be mappings satisfying the following conditions:

- (a) $\psi(x,y) \le \phi(x,y)$, $\forall x,y \in X$, and $\psi(x,x) \ge 0$, $\forall x \in X$;
- (b) for each $x \in X$, $\phi(x, y)$ is upper semicontinuous with respect to y;
 - (c) for each $y \in X$, the set $\{x \in X : \psi(x,y) < 0\}$ is a convex set;
- (d) there exists a nonempty compact set $K \subset X$ and $x_0 \in K$ such that $\psi(x_0, y) < 0$, $\forall y \in X \setminus K$;

Then there exists $\hat{y} \in K$ such that $\phi(x, \hat{y}) \geq 0, \ \forall x \in X$.

3. Existence theorems

In this section, we give two existence theorems of solutions for the general strongly nonlinear variational-like inequality (2.1).

Theorem 3.1. Let $a: H \times H \to (-\infty, \infty)$ be a coercive continuous bilinear form with (C1) and (C2) and $f: K \to (-\infty, \infty]$ be a proper convex lower semicontinuous functional with $int(domf) \cap K \neq \emptyset$. Suppose that $A, C, E: K \to H$ and $N, M: H \times H \to H$ are continuous mappings, $\eta: K \times K \to H$ is Lipschitz continuous with constant δ , for each $v \in K$, $\eta(\cdot, v)$ is continuous and $\eta(v, u) = -\eta(u, v)$ for all $u, v \in K$. Assume that N is η -antimonotone with respect to A in the first argument and η -relaxed Lipschitz with constant ξ with respect to C in the second argument. Let M be η -strongly monotone with constant ϱ with respect to E in the first argument and Lipschitz continuous with constant ϑ in the second argument. Let $F: K \to H$ be Lipschitz continuous with constant l. Suppose that for given $x, y \in H$ and $v \in K$, the mappings $u \mapsto \langle N(x,y), \eta(u,v) \rangle$ and $u \mapsto \langle M(x,y), \eta(v,u) \rangle$ be concave and upper semicontinuous. If $\frac{\delta \vartheta l}{c+\xi+\varrho} < 1$, then the general strongly nonlinear variational-like inequality (2.1) has a unique solution in K.

Proof. First of all we show that for each fixed $\hat{u} \in K$, there exists a unique $\hat{w} \in K$ such that

(3.1)
$$a(\hat{w}, v - \hat{w}) + f(v) - f(\hat{w}) \\ \geq \langle N(A\hat{w}, C\hat{w}) - M(E\hat{w}, F\hat{u}), \eta(v, \hat{w}) \rangle, \quad \forall v \in K.$$

Let \hat{u} be in K. Define the functionals ϕ and $\psi: K \times K \to R$ by

$$\phi(v, w) = a(v, v - w) + f(v) - f(w)$$
$$- \langle N(Av, Cv) - M(Ev, F\hat{u}), \eta(v, w) \rangle$$

and

$$\psi(v, w) = a(w, v - w) + f(v) - f(w)$$
$$- \langle N(Aw, Cw) - M(Ew, F\hat{u}), \eta(v, w) \rangle$$

for all $v, w \in K$.

We check that the functionals ϕ and ψ satisfy all the conditions of Lemma 2.1 in the weak topology. It is easy to see for all $v, w \in K$,

$$\begin{aligned} &\phi(v,w) - \psi(v,w) \\ &= a(v-w,v-w) - \langle N(Av,Cv) - N(Aw,Cv), \eta(v,w) \rangle \\ &- \langle N(Aw,Cv) - N(Aw,Cw), \eta(v,w) \rangle \\ &+ \langle M(Ev,F\hat{u}) - M(Ew,F\hat{u}), \eta(v,w) \rangle \\ &\geq (c+\xi+\varrho)\|v-w\|^2 \geq 0, \end{aligned}$$

which yields that ϕ and ψ satisfy the condition (a) of Lemma 2.1. Note that f is a convex lower semicontinuous functional and for given $x,y \in H, v \in K$, the mappings $u \mapsto \langle N(x,y), \eta(u,v) \rangle$ and $u \mapsto \langle M(x,y), \eta(v,u) \rangle$ are concave and upper semicontinuous. It follows that $\phi(v,w)$ is weakly upper semicontinuous with respect to w and the set $\{v \in K : \psi(v,w) < 0\}$ is convex for each $w \in K$. Therefore the conditions (b) and (c) of Lemma 2.1 hold. Since f is proper convex lower semicontinuous, for each $v \in int(domf), \partial f(v) \neq \emptyset$, see Ekeland and Teman [7]. Let v^* be in $int(domf) \cap K$. It follows that

$$f(u) \ge f(v^*) + \langle r, u - v^* \rangle, \quad \forall r \in \partial f(v^*), u \in K.$$

Put

$$D = (c + \xi + \rho)^{-1}(\|r\| + \delta \|N(Av^*, Cv^*)\| + \delta \|M(Ev^*, F\hat{u})\|)$$

and

$$T = \{ w \in K : ||w - v^*|| \le D \}.$$

Clearly, T is a weakly compact subset of K and for any $w \in K \setminus T$

$$\begin{split} \psi(v^*, w) &= a(w - v^*, v^* - w) + f(v^*) - f(w) \\ &- \langle N(Aw, Cw) - M(Ew, F\hat{u}), \eta(v^*, w) \rangle \\ &\leq -a(w - v^*, w - v^*) - \langle r, w - v^* \rangle \\ &+ \langle N(Aw, Cw) - N(Av^*, Cw), \eta(w, v^*) \rangle + \langle N(Av^*, Cw) \\ &- N(Av^*, Cv^*), \eta(w, v^*) \rangle + \langle N(Av^*, Cv^*), \eta(w, v^*) \rangle \\ &- \langle M(Ew, F\hat{u}) - M(Ev^*, F\hat{u}), \eta(w, v^*) \rangle \\ &- \langle M(Ev^*, F\hat{u}), \eta(w, v^*) \rangle \end{split}$$

$$\leq -\|w - v^*\|[(c + \xi + \varrho)\|w - v^*\| - \|r\| - \delta\|N(Av^*, Cv^*)\| - \delta\|M(Ev^*, F\hat{u})\|]$$

$$< 0,$$

which means that the condition (d) of Lemma 2.1 holds. Thus Lemma 2.1 ensures that there exists a $\hat{w} \in K$ such that $\phi(v, \hat{w}) \geq 0$ for all $v \in K$, that is,

(3.2)
$$a(v, v - \hat{w}) + f(v) - f(\hat{w}) \\ \geq \langle N(Av, Cv) - M(Ev, F\hat{u}), \eta(v, \hat{w}) \rangle, \quad \forall v \in K.$$

Let t be in (0,1] and v be in K. Replacing v by $v_t = tv + (1-t)\hat{w}$ in (3.2), we know that

(3.3)
$$a(v_t, t(v - \hat{w})) + f(v_t) - f(\hat{w}) \\ \geq \langle N(Av_t, Cv_t) - M(Ev_t, F\hat{u}), \eta(v_t, \hat{w}) \rangle, \quad \forall v \in K.$$

Notice that a is bilinear and f is convex. From (3.3) we deduce that

$$t[a(v_t, v - \hat{w}) + f(v) - f(\hat{w})]$$

$$\geq t\langle N(Av_t, Cv_t) - M(Ev_t, F\hat{u}), \eta(v, \hat{w}) \rangle, \quad \forall v \in K,$$

which implies that

$$a(v_t, v - \hat{w}) + f(v) - f(\hat{w})$$

$$\geq \langle N(Av_t, Cv_t) - M(Ev_t, F\hat{u}), \eta(v, \hat{w}) \rangle, \quad \forall v \in K.$$

Letting $t \to 0^+$ in the above inequality, we conclude that

$$a(\hat{w}, v - \hat{w}) + f(v) - f(\hat{w})$$

$$\geq \langle N(A\hat{w}, C\hat{w}) - M(E\hat{w}, F\hat{u}), \eta(v, \hat{w}) \rangle, \quad \forall v \in K.$$

That is, \hat{w} is a solution of (3.1). Now we prove the uniqueness. For any two solutions $w_1, w_2 \in K$ of (3.1), we see that

$$a(w_1, w_2 - w_1) + f(w_2) - f(w_1)$$

 $\geq \langle N(Aw_1, Cw_1) - M(Ew_1, F\hat{u}), \eta(w_2, w_1) \rangle$

and

$$a(w_2, w_1 - w_2) + f(w_1) - f(w_2)$$

$$\geq \langle N(Aw_2, Cw_2) - M(Ew_2, F\hat{u}), \eta(w_1, w_2) \rangle.$$

Adding these inequalities, we deduce that

$$c\|w_{1} - w_{2}\|^{2} \leq a(w_{1} - w_{2}, w_{1} - w_{2})$$

$$\leq \langle N(Aw_{1}, Cw_{1}) - N(Aw_{2}, Cw_{1}), \eta(w_{1}, w_{2}) \rangle$$

$$+ \langle N(Aw_{2}, Cw_{1}) - N(Aw_{2}, Cw_{2}), \eta(w_{1}, w_{2}) \rangle$$

$$- \langle M(Ew_{1}, F\hat{u}) - M(Ew_{2}, F\hat{u}), \eta(w_{1}, w_{2}) \rangle$$

$$\leq -(\xi + \varrho)\|w_{1} - w_{2}\|^{2},$$

which yields that $w_1 = w_2$. That is, \hat{w} is the unique solution of (3.1). This means that there exists a mapping $G: K \to K$ satisfying $G(\hat{u}) = \hat{w}$, where \hat{w} is the unique solution of (3.1) for each $\hat{u} \in K$.

Next we show that G is a contraction mapping. Let u_1 and u_2 be arbitrary elements in K. Using (3.1), we get that

(3.4)
$$a(Gu_1, Gu_2 - Gu_1) + f(Gu_2) - f(Gu_1) \\ \ge \langle N(A(Gu_1), C(Gu_1)) - M(E(Gu_1), Fu_1), \eta(Gu_2, Gu_1) \rangle$$

and

(3.5)
$$a(Gu_2, Gu_1 - Gu_2) + f(Gu_1) - f(Gu_2) \\ \ge \langle N(A(Gu_2), C(Gu_2)) - M(E(Gu_2), Fu_2), \eta(Gu_1, Gu_2) \rangle.$$

Adding (3.4) and (3.5), we arrive at

$$c\|Gu_{1} - Gu_{2}\|^{2}$$

$$\leq a(Gu_{1} - Gu_{2}, Gu_{1} - Gu_{2})$$

$$\leq \langle N(A(Gu_{1}), C(Gu_{1})) - N(A(Gu_{2}), C(Gu_{1})), \eta(Gu_{1}, Gu_{2}) \rangle$$

$$+ \langle N(A(Gu_{2}), C(Gu_{1})) - N(A(Gu_{2}), C(Gu_{2})), \eta(Gu_{1}, Gu_{2}) \rangle$$

$$- \langle M(E(Gu_{1}), Fu_{1}) - M(E(Gu_{2}), Fu_{1}), \eta(Gu_{1}, Gu_{2}) \rangle$$

$$- \langle M(E(Gu_{2}), Fu_{1}) - M(E(Gu_{2}), Fu_{2}), \eta(Gu_{1}, Gu_{2}) \rangle$$

$$\leq - (\xi + \rho) \|Gu_{1} - Gu_{2}\|^{2} + \delta \vartheta l \|u_{1} - u_{2}\| \|Gu_{1} - Gu_{2}\|,$$

that is,

$$||Gu_1 - Gu_2|| \le \frac{\delta \vartheta l}{c + \xi + \rho} ||u_1 - u_2||,$$

which yields that $G: K \to K$ is a contraction mapping by $\frac{\delta \vartheta l}{c+\xi+\varrho} < 1$ and hence it has a unique fixed point $u \in K$, which is a unique solution of the general strongly nonlinear variational-like inequality (2.1). This completes the proof.

THEOREM 3.2. Let a, f, C, N, M, E, F and η be as in Theorem 3.1 and N be Lipschitz continuous with constant ζ in the first argument. Suppose that $A: K \to H$ is Lipschitz continuous with constant ε . If $0 < \frac{\delta \vartheta l}{c + \xi + \varrho - \delta \zeta \varepsilon} < 1$, then the general strongly nonlinear variational-like inequality (2.1) has a unique solution $u \in K$.

Proof. Put

$$D = (c + \xi + \varrho - \delta \zeta \varepsilon)^{-1} (\|r\| + \delta \|N(Av^*, Cv^*)\| + \delta \|M(Ev^*, F\hat{u})\|)$$

and

$$T = \{ w \in K : ||w - v^*|| \le D \}.$$

As in the proof of Theorem 3.1, we conclude that

$$\begin{split} \psi(v^*, w) & \leq -a(w - v^*, w - v^*) - \langle r, w - v^* \rangle \\ & + \langle N(Aw, Cw) - N(Av^*, Cw), \eta(w, v^*) \rangle \\ & + \langle N(Av^*, Cw) - N(Av^*, Cv^*), \eta(w, v^*) \rangle \\ & + \langle N(Av^*, Cv^*), \eta(w, v^*) \rangle - \langle M(Ew, F\hat{u}) \\ & - M(Ev^*, F\hat{u}), \eta(w, v^*) \rangle - \langle M(Ev^*, F\hat{u}), \eta(w, v^*) \rangle \\ & \leq -\|w - v^*\|[(c + \xi + \varrho - \delta\zeta\varepsilon)\|w - v^*\| \\ & - \|r\| - \delta\|N(Av^*, Cv^*)\| - \delta\|M(Ev^*, F\hat{u})\|] \\ & < 0 \end{split}$$

for any $w \in K \setminus T$. The rest of the argument is now essentially the same as in the proof of Theorem 3.1 and therefore is omitted.

4. Algorithm and convergence theorems

Let's consider the following auxiliary variational-like inequality problem: For any given $u \in K$, find $w \in K$ such that

$$\langle w, \eta(v, w) \rangle$$

$$\geq \langle u, \eta(v, w) \rangle + \mu \langle N(Aw, Cw) - M(Ew, Fu), \eta(v, w) \rangle$$

$$- \mu a(u, v - w) - \mu f(v) + \mu f(w), \quad \forall v \in K,$$

where $\mu > 0$ is a constant. Clearly, w = u is a solution of the auxiliary variational-like inequality (4.1). Based on this observation, we suggest the following iterative algorithm.

ALGORITHM 4.1. Let $A, C, E, F : K \to H$, $N, M : H \times H \to H$ and $\eta : K \times K \to H$ be mappings, and $f : K \to (-\infty, \infty]$ be a real functional. For any given $u_0 \in K$, compute sequences $\{u_n\}_{n\geq 0}$ and $\{w_n\}_{n\geq 0}$ by the iterative schemes

$$(4.2) \begin{cases} \langle w_n, \eta(v, w_n) \rangle \\ \geq (1 - \alpha_n) \langle u_n, \eta(v, w_n) \rangle \\ + \alpha_n \langle u_n + \mu N(Aw_n, Cw_n) - \mu M(Ew_n, Fu_n), \eta(v, w_n) \rangle \\ - \alpha_n \mu a(u_n, v - w_n) - \alpha_n \mu f(v) + \alpha_n \mu f(w_n) \end{cases}$$

and

$$\langle u_{n+1}, \eta(v, u_{n+1}) \rangle$$

$$\geq (1 - \beta_n) \langle w_n, \eta(v, u_{n+1}) \rangle$$

$$+ \beta_n \langle w_n + \mu N(Au_{n+1}, Cu_{n+1})$$

$$- \mu M(Eu_{n+1}, Fw_n), \eta(v, u_{n+1}) \rangle - \beta_n \mu a(w_n, v - u_{n+1})$$

$$- \beta_n \mu f(v) + \beta_n \mu f(u_{n+1}),$$

for all $v \in K$ and $n \ge 0$, where $\{\alpha_n\}_{n \ge 0}, \{\beta_n\}_{n \ge 0} \subset [0, 1]$ with $\sum_{n=0}^{\infty} \beta_n = \infty$.

THEOREM 4.1. Let a, f, F, A, C, E, F, N, M and η be as in Theorem 3.1. Suppose that M is strongly monotone with constant τ with respect to F in the second argument and η is strongly monotone with constant ω . If $\frac{\delta \vartheta l}{c+\xi+\varrho} < 1$ and there exists a constant $\mu > 0$ such that

(4.4)
$$\frac{\delta - \omega}{\xi + \varrho} \le \mu < \min \left\{ \frac{\delta}{d}, \frac{2\delta(\delta \tau - d)}{(\delta \vartheta l)^2 - d^2} \right\},$$

then the general strongly nonlinear variational-like inequality (2.1) possesses a unique solution $u \in K$ and the iterative sequence $\{u_n\}_{n\geq 0}$ generated by Algorithm 4.1 converges strongly to u.

Proof. It follows from Theorem 3.1 that the general strongly nonlinear variational-like inequality (2.1) has a unique solution $u \in K$ such that

$$\langle u, \eta(v, u) \rangle \ge (1 - \alpha_n) \langle u, \eta(v, u) \rangle$$

$$+ \alpha_n \langle u + \mu N(Au, Cu) - \mu M(Eu, Fu), \eta(v, u) \rangle$$

$$- \alpha_n \mu a(u, v - u) - \alpha_n \mu f(v) + \alpha_n \mu f(u)$$

and

$$\langle u, \eta(v, u) \rangle \ge (1 - \beta_n) \langle u, \eta(v, u) \rangle$$

$$+ \beta_n \langle u + \mu N(Au, Cu) - \mu M(Eu, Fu), \eta(v, u) \rangle$$

$$- \beta_n \mu a(u, v - u) - \beta_n \mu f(v) + \beta_n \mu f(u)$$

for all $v \in K$ and $n \ge 0$. Taking v = u in (4.2), $v = w_n$ in (4.5) and adding these inequalities, we get that

$$\omega \|w_n - u\|^2$$

$$\leq (1 - \alpha_n) \langle u_n - u, \eta(w_n, u) \rangle$$

$$+ \alpha_n \mu \langle N(Aw_n, Cw_n) - N(Au, Cw_n), \eta(w_n, u) \rangle$$

$$+ \alpha_n \mu \langle N(Au, Cw_n) - N(Au, Cu), \eta(w_n, u) \rangle$$

$$- \alpha_n \mu \langle M(Ew_n, Fu_n) - M(Eu, Fu_n), \eta(w_n, u) \rangle$$

$$+ \alpha_n \langle u_n - u - (\mu M(Eu, Fu_n) - \mu M(Eu, Fu)), \eta(w_n, u) \rangle$$

$$- \alpha_n a(u_n - u, w_n - u)$$

$$\leq \delta \left[1 - \alpha_n \left(1 - \mu \frac{d}{\delta} - \sqrt{1 - 2\mu\tau + (\mu\vartheta l)^2} \right) \right] \|u_n - u\| \|w_n - u\|$$

$$- \mu(\xi + \varrho) \|w_n - u\|^2, \quad \forall n \geq 0,$$

that is,

$$||w_{n} - u|| \leq \theta_{1} \left[1 - \alpha_{n} \left(1 - \mu \frac{d}{\delta} - \sqrt{1 - 2\mu\tau + (\mu\vartheta l)^{2}} \right) \right] ||u_{n} - u||$$

$$\leq [1 - \alpha_{n}(1 - \theta_{2})] ||u_{n} - u||$$

$$\leq ||u_{n} - u||, \quad \forall n \geq 0,$$

where $\theta_1 = \frac{\delta}{\omega + \mu(\xi + \varrho)} \le 1$ and $\theta_2 = \frac{\mu d}{\delta} + \sqrt{1 - 2\mu\tau + (\mu\vartheta l)^2} < 1$ by (4.4). It follows from (4.3), (4.6) and (4.7) that

$$\begin{split} & \omega \|u_{n+1} - u\|^2 \\ & \leq \delta (1 - \beta_n) \|w_n - u\| \|u_{n+1} - u\| + \delta \beta_n \theta_2 \|w_n - u\| \|u_{n+1} - u\| \\ & - \mu(\xi + \varrho) \|u_{n+1} - u\|^2, \quad \forall n \geq 0, \end{split}$$

that is,

$$||u_{n+1} - u|| \le [1 - \beta_n (1 - \theta_2)] ||u_n - u||$$

$$\le e^{-(1 - \theta_2)\beta_n} ||u_n - u||$$

$$\le e^{-(1 - \theta_2)\sum_{i=0}^n \beta_i} ||u_0 - u||, \quad \forall n \ge 0,$$

which yields that $\lim_{n\to\infty} \|u_{n+1} - u\| = 0$ by $\sum_{n=0}^{\infty} \beta_n = \infty$. This completes the proof.

Similarly we have the following result.

THEOREM 4.2. Let a, f, F, N, A, C, M, E, F and η be as in Theorem 3.2 with

$$\delta < \min \bigg\{ \frac{c + \xi + \varrho}{\vartheta l + \zeta \varepsilon}, \frac{\xi + \varrho}{\zeta \varepsilon} \bigg\}.$$

Suppose that M is strongly monotone with constant τ with respect to F in the second argument and η is strongly monotone with constant ω . If there exists a constant $\mu > 0$ satisfying

$$\frac{\delta - \omega}{\xi + \varrho - \delta \zeta \varepsilon} \le \mu < \min \left\{ \frac{\delta}{d}, \ \frac{2\delta(\delta \tau - d)}{(\delta \vartheta l)^2 - d^2} \right\},$$

then the general strongly nonlinear variational-like inequality (2.1) possesses a unique solution $u \in K$ and the iterative sequence $\{u_n\}_{n\geq 0}$ generated by Algorithm 4.1 converges strongly to u.

References

- [1] S. S. Chang, Variational inequalitity and complementarity theory with applications, Shanghai Sci. Technol., Shanghai (1991).
- [2] _____, On the existence of solutions for a class of quasi-bilinear variational inequalities, J. Sys. Sci. Math. Scis. 16 (1996), 136–140 [In Chinese].
- [3] P. Cubiotti, Existence of solutions for lower semicontinuous quasi-equilibrium problems, Comput. Math. Appl. 30 (1995), no. 12, 11–22.
- [4] X. P. Ding, Algorithm of solutions for mixed nonlinear variational-like inequalities in reflexive Banach space, Appl. Math. Mech. 19 (1998), no. 6, 521-529.
- [5] _____, Existence and algorithm of solutions for nonlinear mixed variational-like inequalities in Banach spaces, J. Comput. Appl. Math. 157 (2003), no. 2, 419–434.
- [6] X. P. Ding and K. K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Colloq. Math. 63 (1992), no. 2, 233-247.
- [7] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, Holland, 1976.
- [8] N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl. 256 (2001), no. 2, 345–359.
- Z. Liu, J. S. Ume, and S. M. Kang, Nonlinear variational inequalities on reflexive Banach spaces and topological vector spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 4, 199-207.

- [10] Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Completely generalized multivalued nonlinear quasi-variational inclusions, Int. J. Math. Math. Sci. 30 (2002), no. 10, 593-604.
- [11] _____, On the generalized nonlinear quasivariational inclusions, Acta. Math. Inform. Univ. Ostraviensis 11 (2003), no. 1, 81-90.
- [12] _____, Sensitivity analysis for parametric completely generalized nonlinear implicit quasivariational inclusions, J. Math. Anal. Appl. 277 (2003), no. 1, 142–154.
- [13] ______, Generalized mixed quasivariational inclusions and generalized mixed resolvent equations for fuzzy mappings, Appl. Math. Comput. 149 (2004), no. 3, 879–891.
- [14] Z. Liu, S. M. Kang, and J. S. Ume, On general variational inclusions with noncompact valued mappings, Adv. Nonlinear Var. Inequal. 5 (2002), no. 2, 11-25.
- [15] _____, Completely generalized multivalued strongly quasivariational inequalities, Publ. Math. Debrecen 62 (2003), no. 1-2, 187–204.
- [16] _____, Generalized variational inclusions for fuzzy mappings, Adv. Nonlinear Var. Inequal. 6 (2003), no. 1, 31–40.
- [17] _____, The solvability of a class of quasivariational inequalities, Adv. Nonlinear Var. Inequal. 6 (2003), no. 2, 69–78.
- [18] Z. Liu and S. M. Kang, Generalized multivalued nonlinear quasi-variational inclusions, Math. Nachr. 253 (2003), 45-54.
- [19] _____, Convergence and stability of perturbed three-step iterative algorithm for completely generalized nonlinear quasivariational inequalities, Appl. Math. Comput. 149 (2004), no. 1, 245–258.
- [20] Z. Liu, J. S. Ume, and S. M. Kang, General strongly nonlinear quasivariational inequalities with relaxed Lipschitz and relaxed monotone mappings, J. Optim. Theory Appl. 114 (2002), no. 3, 639–656.
- [21] ______, Resolvent equations technique for general variational inclusions, Proc. Japan Acad., Ser. A Math. Sci. 78 (2002), no. 10, 188-193.
- [22] _____, Nonlinear variational inequalities on reflexive Banach spaces and topological vector spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 4, 199–207.
- [23] ______, Completely generalized quasivariational inequalities, Adv. Nonlinear Var. Inequal. 7 (2004), no. 1, 35–46.
- [24] P. D. Panagiotopoulos and G. E. Stavroulakis, New types of variational principles based on the notion of quasidifferentiability, Acta Mech. 94 (1992), no. 3-4, 171-194.
- [25] J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl. 124 (1987), no. 1, 73-81.
- [26] G. Tian, Generalized quasi-variational-like inequality problem, Math. Oper. Res. 18 (1993), no. 3, 752–764.
- [27] R. U. Verma, On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators, J. Math. Anal. Appl. 213 (1997), no. 1, 387– 392.
- [28] _____, Generalized variational inequalities and associated nonlinear equations, Czechoslovak Math. J. 48 (1998), no. 3, 413-418.
- [29] _____, Generalized pseudo-contractions and nonlinear variational inequalities, Publ. Math. Debrecen **53** (1998), no. 1-2, 23–28.

- [30] _____, The solvability of a class of generalized nonlinear variational inequalities based on an iterative algorithm, Appl. Math. Lett. 12 (1999), no. 4, 51–53.
- [31] _____, A general iterative algorithm and solvability of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequal. 4 (2001), no. 2, 79-87.
- [32] J. C. Yao, Existence of generalized variational inequalities, Oper. Res. Lett. 15 (1994), no. 1, 35-40.
- [33] _____, The generalized quasi-variational inequality problem with applications, J. Math. Anal. Appl. 158 (1991), no. 1, 139-160.

ZEQING LIU AND JUHE SUN, DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY, P. O. Box 200, Dalian, Liaoning 116029, P. R. China *E-mail*: zeqingliu@dl.cn

Soo Hak Shim and Shin Min Kang, Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701, Korea

E-mail: math@nongae.gsnu.ac.kr smkang@nongae.gsnu.ac.kr