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ON SOLVABILITY AND ALGORITHM
OF GENERAL STRONGLY NONLINEAR
VARIATIONAL-LIKE INEQUALITIES

ZEQING Liu, JUHE SUN, S00 HAK SHIM, AND SHIN MIN KANG

ABSTRACT. In this paper, a new class of general strongly nonlinear
variational-like inequalities was introduced and studied. The exis-
tence and uniqueness of solutions and a new iterative algorithm
for the general strongly nonlinear variational-like inequality are es-
tablished and suggested, respectively. The convergence criteria of
the iterative sequence generated by the iterative algorithm are also
given.

1. Introduction

It is known that an important and useful generalization of variational
inequalities is variational-like inequality [1]-[33]. Recently, by using the
Berge maximum theorem, Tian [26] and Yao [32] studied some mixed
variational-like inequalities, Huang and Deng [8] extended the auxiliary
principle technique to study a class of generalized strongly nonlinear
mixed variational-like inequalities in Hilbert spaces. Ding [4], [5] and
others introduced and studied some classes of nonlinear variational-like
inequalities in reflexive Banach spaces. Verma [27]-[31] discussed some
classes of variational inequalities involving various nonlinear monotone
operators in Hilbert spaces.

In this paper, we introduce and study a new class of general strongly
nonlinear variational-like inequalities. The existence and uniqueness of
solutions and a new iterative algorithm for the general strongly nonlinear
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variational-like inequality are proved and suggested, respectively. The
convergence criteria of the sequence generated by the iterative algorithm
are given.

2. Preliminaries

Let H be a real Hilbert space endowed with an inner product (-,-)
and norm || - ||, respectively. Let K be a nonempty closed convex subset
of HH A/ C,F: K - H NNM:HxH — Handn: KxK — H be
mappings, and f : K — (—o00,00] be a real functional. Suppose that
a: HxH — (—00,00) is a coercive continuous bilinear form, that is,
there exist positive constants ¢ and d such that

(C1) a(v,v) 2 c|lvl?, Vv € H;

(C2) a(u,v) < d||ull||v]], YVu,v € H.

Clearly, ¢ < d.

We consider the following general strongly nonlinear variational-like
inequality problem: ‘

Find u € K such that

a(u,v —u) + f(v) = f(u)

(2.1) > (N(Au,Cu) — M(Eu, Fu),n(v,u)), VYve K.

Special Cases

(A) If N(Au,Cu) = Au— Cu, a(u,v) = 0 and M (Eu, Fu) = 0 for all
u,v € K, then the general strongly nonlinear variational-like inequality
(2.1) is equivalent to finding u € K such that

(2.2) (Cu — Au,n(v,u)) 2 f(u) — f(v), WEK,

which was introduced and studied by Ding [4].

(B) If N(Au,Cu) = Au — Cu, a(u,v) = 0, M(Eu,Fu) = 0 and
n(u,v) = gu — gv for all u,v € K, then the general strongly nonlinear
variational-like inequality (2.1) is equivalent to finding u € K such that

(2.3) (Cu— Au,gv — gu) > f(u) — f(v), YveK,

which was studied by Yao [32].

DEFINITION 2.1. Let A: K -  H N:HxH - Handn: KxK —
H be mappings.
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(1) A is said to be Lipschitz continuous with constant « if there exists
a constant a > 0 such that -

|Au — Av|| < aflu —v||, Yu,ve€ K.

(2) N is said to be Lipschitz continuous with constant 3 in the first
argument if there exists a constant 8 > 0 such that

|IN(u,w) — N(v,w)|| < Bllu—vl|, Vu,v,we H.

(3) N is said to be strongly monotone with constant v with respect
to A in the second argument if

(N (w, Au) — N(w, Av),u —v) > v|lu —v||?, Vu,v€ K, w € H.

(4) N is said to be n-antimonotone with respect to A in the first
argument if

(N(Au,w) — N(Av,w),n(u,v)) <0, Yu,v€ K, we H.

(5) N is said to be n-strongly monotone with constant £ with respect
to A in the first argument if there exists a constant £ > 0 such that

(N(Au,w,) — N(Av,w),n(u,v)) > &llu —v||?, VYu,v€ K, we H.

(6) N is said to be n-relazed Lipschitz with constant ¢ with respect
to A in the second argument if there exists a constant ¢ > 0 such that

(N(w, Au) — N(w, Av),n(u,v)) < —C|lu —v||?, VYu,v€ K, w € H.

(7) n is said to be Lipschitz continuous with constant § if there exists
a constant 6 > 0 such that

H77(U>U)|| S 6”“ - ’UH, Vu,'u € K.

(8) n is said to be strongly monotone with constant w if there exists
a constant w > 0 such that

(u —v,m(u,v)) > w|u—v|? VYu,veK.

Similarly, we can define the Lipschitz continuity of N in the second
argument.
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LEmMA 2.1. ([1], [2]) Let X be a nonempty closed convex subset
of a Hausdorff linear topological space E, and ¢, : X x X — R be
mappings satisfying the following conditions:

(a) ¥(z,y) < é(z,y), Vz,y € X, and ¢(z,z) > 0, Vz € X;

(b) for each z € X, ¢(z,y) is upper semicontinuous with respect to
Y

(c) for each y € X, the set {x € X : y(z,y) < 0} is a convex set;

(d) there exists a nonempty compact set K C X and zy € K such
that ¥(zo,y) <0, Vy € X \ K;

Then there exists § € K such that ¢(z,3) > 0, Vz € X.

3. Existence theorems

In this section, we give two existence theorems of solutions for the
general strongly nonlinear variational-like inequality (2.1).

THEOREM 3.1. Let a: H x H — (—00,00) be a coercive continuous
bilinear form with (C1) and (C2) and f : K — (—o0,00] be a proper
convex lower semicontinuous functional with int(domf) N K # 0. Sup-
pose that AJ/C,F : K — H and N,M : H x H — H are continuous
mappings, n : K x K — H is Lipschitz continuous with constant 6, for
each v € K, n(-,v) is continuous and n(v,u) = —n(u,v) for all u,v € K.
Assume that N is n-antimonotone with respect to A in the first argu-
ment and n-relaxed Lipschitz with constant £ with respect to C in the
second argument. Let M be n-strongly monotone with constant ¢ with
respect to E in the first argument and Lipschitz continuous with con-
stant ¥ in the second argument. Let F' : K — H be Lipschitz continuous
with constant . Suppose that for given z,y € H and v € K, the map-
pings u — (N(z,y),n(u,v)) and v — (M(z,y),n(v,u)) be concave and
upper semicontinuous. If cere < 1, then the general strongly nonlinear
variational-like inequality (2.1) has a unique solution in K.

Proof. First of all we show that for each fixed 4 € K, there exists a
unique w € K such that

a(w,v — ) + f(v) — f(D)
> (N(Aw,Cw) — M(Ew, Fi),n(v,w)), YveK.
Let @ be in K. Define the functionals ¢ and ¢ : K x K — R by
$(v,w) = a(v,v —w) + f(v) — f(w)
— (N(Av,Cv) — M(Ev, Fi),n(v,w))

(3.1)



General strongly nonlinear variational-like inequalities 323

and

P(v,w) = a(w,v —w) + f(v) - f(w)
— (N(Aw, Cw) — M(Ew, Fi),n(v, w))
for all v,w € K.
We check that the functionals ¢ and 1 satisfy all the conditions of
Lemma 2.1 in the weak topology. It is easy to see for all v,w € K,
(b('l), w) - ’ll)('l), w)
= a(v —w,v — w) — (N(Av,Cv) — N(Aw, Cv),n(v,w))
~ (N(Aw, Cv) — N(Aw, Cw), n(v,w))
+ (M (Ev, Fi) — M(Ew, Fi),n(v, w))
> (c+&+0)llv—w[* >0,
which yields that ¢ and 1 satisfy the condition (a) of Lemma 2.1.
Note that f is a convex lower semicontinuous functional and for given
xz,y € H, v € K, the mappings v — (N(z,y), n(u,v)) and v
(M (z,y),n(v,u)) are concave and upper semicontinuous. It follows that
¢(v, w) is weakly upper semicontinuous with respect to w and the set
{v € K : ¢¥(v,w) < 0} is convex for each w € K. Therefore the con-
ditions (b) and (c) of Lemma 2.1 hold. Since f is proper convex lower
semicontinuous, for each v € int(domf), 8f(v) # 0, see Ekeland and
Teman [7]. Let v* be in int(domf) N K. It follows that
fw) > f*) + (r,u—v*), Vredf(v'),ueckK.
Put
D = (c+&+ o) (lIrll + SIN(Av*, Cv™) || + 8| M (Ev*, F)])
and
T={weK:|w-v"| <D}
Clearly, T is a weakly compact subset of K and for any w € K\ T
Yo", w) = a(w —v",v" —w) + f(v°) = f(w) |
— (N(Aw, Cw) — M(Ew, Fa),n(v*,w))
< —-alw—vw—v")—(r,w—v")
+ (N(Aw, Cw) — N(Av*, Cw), n(w,v")) + (N(Av*, Cw)
— N(Av*, Cv*), n(w,v*)) + (N(Av*,Cv*),n(w,v"))
— (M(Ew, Fi) — M(Ev*, Fa),n(w,v"))
- <M(E’U*, Fﬁ)) 77('w7 U*)>
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< —flw = v*[|[(c + & + o)llw — v7|| = Il = | N (Av™, Cv7)]|
— 0| M(Ev*, Fa)l]
<0,
which means that the condition (d) of Lemma 2.1 holds. Thus Lemma

2.1 ensures that there exists a @ € K such that ¢(v,w) > 0 forallv € K,
that is,

a(v,v — ) + f(v) — f(w)

(3-2) > (N(Av,Cv) — M(Ev, Fi),n(v,0)), YveK.

Let ¢t be in (0,1] and v be in K. Replacing v by v; = tv + (1 — t)w in
(3.2), we know that

a(vs, (v = @) + f(ve) - £(D)
)

B3 S (N(Av, Cvy) — M(Ev, Fil), (v, 5)), Vo € K.

Notice that a is bilinear and f is convex. From (3.3) we deduce that

tla(ve, v — ) + f(v) — f(d)]
> t(N(Av, Cvy) — M (Ev, Fii),n(v,0)), Vv € K,

which implies that

a(vg,v — W) + f(v) — f()
> (N(Avt, Cvy) — M(Ev, Fii),n(v,w)), Yve K.

Letting t — 07 in the above inequality, we conclude that

a(,v — )+f() )
> (N(Aw,Cw) — M(Ew, Fi),n(v,w)), YveK.

That is, 0 is a solution of (3.1). Now we prove the uniqueness. For any
two solutions wi,ws € K of (3.1), we see that

a(wy,wy —wy) + flwz) — f(wr)
> (N(Awy, Cwy) — M(BEw,, Fii), n(ws, w1))
and
a(wz, wy —wz) + f(w) — fwz)
> (N(Aws, Cwa) — M(Ews, Fi),n(w:, w2)).
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Adding these inequalities, we deduce that
cllwr — wo|? < a(wy — we, wy — wo)
< (N(Awy, Cwy) — N(Aws, Cw1 ), n(wr, w2))
+ (N (Awz, Cun) — N(Awz, Cws), n(w1, we))
— (M(Bwy, F4) — M(Ews, Fi), n(wy, ws))
< =€+ o)|wr — w2,
which yields that w; = ws. That is, @ is the unique solution of (3.1).
This means that there exists a mapping G : K — K satisfying G(4) = o,
where w0 is the unique solution of (3.1) for each 4 € K. .

Next we show that GG is a contraction mapping. Let u; and us be
arbitrary elements in K. Using (3.1), we get that

a(Guy, Gua — Guy) + f(Gug) — f(Guq)

B S (NAGw), C(Gw)) — M(E(Gur), Fur), n(Guz, Gur))
and
(3.5) a(Guz, Guy — Gug) + f(Gu1) — f(Gua)

> (N(A(Guz), C(Guz)) — M(E(Guz), Fu2),n(Gu1, Gug)).
Adding (3.4) and (3.5), we arrive at
cl|Gur — Gua||?
< a(Guy — Gug, Guy — Gug)
< (N(A(Gu1),C(Gu1)) — N(A(Guz),C(Guq)), n(Gu1, Guy))
+ (N(A(Guz), C(Guy)) — N(A(Guz), C(Gug)),n(Guq, Guz))
— (M(E(Gu1), Fu1) — M(E(Gus), Fuy), n(Gui, Gus))
— (M(E(Gus), Fu1) — M(E(Gus), Fus), n(Gu1, Gug))
< = (€ + 0)lIGur — Gua|® + d91lu1 — uz ||| Gur — Guell,
that is,

ool
Guy — Gug|| € ———||ug — u2|,
|Gua 2||_C+£+Q||1 2l
which yields that G : K — K is a contraction mapping by 29 < 1

c+€+o
and hence it has a unique fixed point v € K, which is a unique solution

of the general strongly nonlinear variational-like inequality (2.1). This
completes the proof. O
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THEOREM 3.2. Let a,f,C,N,M,E,F and n be as in Theorem 3.1
and N be Lipschitz continuous with constant ¢ in the first argument.
Suppose that A : K — H is Lipschitz continuous with constant . If

0< % < 1, then the general strongly nonlinear variational-like

inequality (2.1) has a unique solution u € K.
Proof. Put
D =(c+&+e—8Ce) " (lIrll + SIN(Av*, Cv*)|| + 8| M (Ev*, Fa)ll)
and '
T={wekK:|w-v*| <D}
As in the proof of Theorem 3.1, we conclude that

P, w) < —a(w —v*,w—v*) — (r,w — v*)
+ (N(Aw, Cw) — N(Av*, Cw), n{w, v*))
+ (N(Av*, Cw) — N(Av*, Cv*), n(w,v*))
+ (N(Av*, Cv*), n(w,v*)) — (M(Ew, Fi)
— M(Ev*, Fi),n(w,v*)) — (M(Ev*, F4), n(w, v*))
< —flw —v*[|[(c+ & + ¢ - 6Ce)||w — v
— lIrll = SN (Av*, Cv™)|| — 8|| M (Ev™, Fa)|]
<0

for any w € K\ T. The rest of the argument is now essentially the same
as in the proof of Theorem 3.1 and therefore is omitted. a

4. Algorithm and convergence theorems

Let’s consider the following auxiliary variational-like inequality prob-
lem: For any given u € K, find w € K such that

(w, n(v, w))
(41) > (un(o,w) + w(N(Aw, Cw) — M(Ew, Fu), n(v, w))
— pa(u,v —w) — pf(v) + pf(w), YvéEK,
where ¢ > 0 is a constant. Clearly, w = u is a solution of the auxiliary

variational-like inequality (4.1). Based on this observation, we suggest
the following iterative algorithm.
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ALGoORITHM 4.1. Let A,C,E,F: K —- H, Ny M : H x H— H and
n: Kx K — H be mappings, and f : K — (—00, 0] be a real functional.
For any given ug € K, compute sequences {uy }n>0 and {wn }n>0 by the
iterative schemes

<wn,n(vawn)>
> (1 - an)<'un,77('U, wn)>

2 4 n + uN (A, Cu) — M (B, Fug), (v, wn))
— A f10(Un, ¥ — Wy) = Cnuf(V) + anpf(wn)
and
<’U,n+1, 7](”7 Un+1)>
> (1 - ﬂn)(wna 77(% un+1)>
(43) + Bn <’lUn + MN(AUn+1, Cun+1)
- H‘M(Eun-f—l’ Fwn)v 77(1)7 un—}—l)) - ﬂnua(wﬂn U - Un+1)
= Bapf (V) + Brpf (un+t1),

for allv € K and n > 0, where {@n }n>0, {Bn}n>0 C [0,1] with > o0 Bn
= o0.

THEOREM 4.1. Leta, f,F,A,C,E,F,N,M and n be as in Theorem
3.1. Suppose that M is strongly monotone with constant T with respect
to F' in the second argument and 7 is strongly monotone with constant

w. If - fgig < 1 and there exists a constant pu > 0 such that

0 —w

(4.4) T

Sﬂ<mm{5 %wT—@}

d’ (891)2 — &2
then the general strongly nonlinear variational-like inequality (2.1) pos-

sesses a unique solution u € K and the iterative sequence {up}n>0
generated by Algorithm 4.1 converges strongly to u.

Proof. It follows from Theorem 3.1 that the general strongly nonlin-
ear variational-like inequality (2.1) has a unique solution u € K such
that

(u,n(v,u)) 2 (1 = an){u, n(v,u))
(45) + an(“ + HN(AU'7 Cu) - 'U'M(Eu’ Fu)a U(Ua u))
~ npialu, 0~ ) = s (0) + s (1)



328 Zeqing Liu, Juhe Sun, Soo Hak Shim, and Shin Min Kang

and
(u,n(v,u)) = (1= B){u,n(v,w))
(4.6) + Bn{u + uN(Au, Cu) — uM (Eu, Fu),n(v,u))
— Bnpa(u,v — u) = Bupf(v) + Bupf(u)

for all v € K and n > 0. Taking v = v in (4.2), v = w, in (4.5) and
adding these inequalities, we get that

wlwy, — ull?

< (1 — an)(un — u, n(wn, u))

+ an (N (Awy,, Cw,) — N(Au, Cwy), n(wy, u))

+ anpu{N(Au, Cw,) — N(Au, Cu),n(wn, u))

— anp{M(Ewy, Fun) — M(Eu, Fu,), n(wy, u))

+ an(tn —u — (UM (Eu, Fu,) — pM(Eu, Fu)), n(w,, )}

— apa(up — u, w, — u)

d
S5P~ﬂm@—u3—Vi—MT+WWVHWm—Uan—%
— w(E + Q)llwn —ul?, Vn>0,

that is,

d
lwn = ull < 03 [1 = @ (1 = % ~ /T =27 + (D)2 | Jn —
(4.7) < 1= an(l — 03)][ftim — ]
< lum—ul, Vr>0,

where §; = m < land 6, = & + /T—2ur + (udl)2 < 1 by
(4.4). It follows from (4.3), (4.6) and (4.7) that

wlltnyy — ulf?

< 91 = Bo)llwn — ullltns1 — ull + 5Bnballwn — ullllunts — ull

— (€ + o)lluns1 —ul?, Vn >0,

that is,
[unt1 —ull < [1~ Bn(1 — 62)]llun — ull
< e~ (1=62)B ||Um _ u”

< e~ (1-62) L7, ﬂi“ll,o —ull, V¥n>0,
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which yields that lim, o ||tnt1 —ull =0 by Y. B, = oo. This com-
pletes the proof. O

Similarly we have the following result.

THEOREM 4.2. Let a, f,F,N,A,C,M,E,F and 7 be as in Theorem

3.2 with
§ < min c+éto {+o
W+’ (e |

Suppose that M is strongly monotone with constant T with respect to
F' in the second argument and 7 is strongly monotone with constant w.
If there exists a constant p > 0 satisfying

<o [ 2007 = d)
=S Gonz—a2 [

6 —w
E+o—0Ce

then the general strongly nonlinear variational-like inequality (2.1) pos-
sesses a unique solution w € K and the iterative sequence {us}n>0
generated by Algorithm 4.1 converges strongly to wu.
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