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TOPOLOGICAL ASPECTS OF FILTERS
IN LATTICE IMPLICATION ALGEBRAS

YouNG BAE JUN

ABSTRACT. A condition for a lattice filter to be a filter is given.
Using the prime filter theorem which is discussed in |2}, topological
aspects on filters are discussed.

1. Introduction

In order to research the logical system whose propositional value is
given in a lattice, Xu [3] proposed the concept of lattice implication
algebras, and discussed some of their properties. Xu and Qin [4] intro-
duced the notions of filter and implicative filter in a lattice implication
algebra, and investigated their properties. The present author [1] gave
a characterization of a filter, and provided some equivalent conditions
for a filter to be an implicative filter in a lattice implication algebra. In
this paper, we first give a condition for a lattice filter to be a filter in
a lattice implication algebra. Using the prime filter theorem which is
discussed in (2], we discuss topological aspects on filters.

2. Preliminaries

DEFINITION 2.1. (Xu [3]) By a lattice implication algebra we mean a
bounded lattice (L, V,A,0,1) with order-reversing involution “7” and
a binary operation “ — ” satisfying the following axioms:

1) 2= (y—2)=y—(z— 2),
(12) z -z =1,

13) z—y=9 -2,

(14) z->y=y—z=1=>z=y,

1) (@—y)>y=(y—2) >z,
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(L) (zVy) > z=(z—=2)A(y— 2),
(L2) (zAy)~z=(x—2)V(y—2)
for all z,y,z € L.

Note that the conditions (L1) and (L2) are equivalent to the condi-
tions

L3) z2— (yAz)=(z—>y)A(z— z),

(L4) z— (yVz)=(x—y)V(z— z), respectively.

We can define a partial ordering < on a lattice implication algebra L
byx<yifandonly if x —» y = 1.

EXAMPLE 2.2. (Xu and Qin [4]) Let L := {0,a,b,c,1}. Define the
partially ordered relation on L as 0 < a < b < ¢ < 1, and define

z Ay :=min{z,y}, 2 Vy := max{z,y}

for all z,y € L and “/’and “—” as follows:

x| 2 -0 a b ¢ 1
0|1 011 1 1 1 1
alc alc 1 1 11
bl b b|b c 1 11
cla cja b ¢ 1 1
110 1 0 a b ¢ 1

Then (L, V, A,1,—) is a lattice implication algebra.

(43 »

In the sequel the binary operation “ — ” will be denoted by juxta-
position. We can define a partial ordering “ < ” on a lattice implication
algebra L by x < y if and only if xy = 1.

In a lattice implication algebra L, the following hold (see [3]):

(P1) 0z=1,lz=z and z1 = 1.

(P2) zy < (yz)(z2).

(P3) z <y implies yz < zz and 2z < 2y.

(P4) 2’ = z0.

(P5) zVvy=(zy)y.

(P6) ((yz)y') ==z Ay = ((zy)z’).

(P7) z < (zy)y.
A lattice filter is a nonempty subset F' of a lattice (L, A, V) satisfying
(F1) z<yandz € Fimplyy € F,

(F2) z,y € F impliesz Ay € F.
A nonempty subset F' of a lattice implication algebra L is called a

filter of L if it satisfies for all z,y € L,
(F3) 1eF,
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(F4) z € F and zy € F imply y € F.

A proper filter P of a lattice implication algebra L is said to be prime
if whenever z Vy € Pthenx € Pory € P.

PROPOSITION 2.3. (Jun [1, Proposition 3.2]) Every filter F' of a lattice
implication algebra L has the following property:

x<yandz € Fimplyy € F.

3. Topological aspects

Let L be a lattice implication algebra. We say that a relation ~ is a
congruence relation on L if it is an equivalence relation on L with the
property that if x ~ y then xz ~ yz and zx ~ zy for all z € L. We shall
denote a general congruence by 6. Clearly, 6[1] := {x € L | x ~ 1} is
a filter of L. On the other hand, given a filter F' of L, we can define a
congruence relation §(F) on L by z ~ y mod 0(F) if and only if zy € F
and yz € F. It is easily verified that (F) is a congruence relation on L.
The set of all filters of L is a lattice, and so is the set of all congruences
on L.

THEOREM 3.1. Let L be a lattice implication algebra. Then the

lattice of congruence relations on L is isomorphic to the lattice of all
filters of L.

Proof. Define a mapping
® : {lattice of congruence relations on L} — {lattice of filters of L}

by ®(0) = 0[1]. Clearly, if § C ¢, then ®(0) C ®(¢). Conversely, suppose
that ®(0) C ®(¢). We claim that § C ¢. Let x ~ y mod . Then zy ~ 1
mod @ and yz ~ 1 mod #. Thus

zy, yx € 0[1] = 2(6) C B(¢) = ¢[1],
and so zy ~ 1 mod ¢ and yz ~ 1 mod ¢. Therefore x Vy ~ y mod ¢
and z Vy ~ & mod ¢ which imply that z ~ y mod ¢. Hence @ is 1-1.

We now claim that ® is onto. Let G be a filter of L and consider the
corresponding congruence relation (G) on L. Then

®(0(G)) = 6(G)l]={z€L|z~1mod 0(G)}
= {ze€l|zeG}=G.

Thus @ is a 1-1 correspondence. Since @ is isotone, it is the required
order isomorphism. This completes the proof. O
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THEOREM 3.2. In a lattice implication algebra, every filter is a lattice
filter.

Proof. Let F be a filter of a lattice implication algebra L and let
xz,y € F. Since

y(EAy) =y Ayy=yrAl=yz >z,
it follows from Proposition 2.3 and (F4) that z Ay € F. Combining this
fact and Proposition 2.3 induces the desired result. O

The converse of Theorem 3.2 may not be true as seen in the following
example.

ExAMPLE 3.3. Let L := {0,a,b,c,1} be a set with the following
Hasse diagram as a partial ordering. Define a unary operation “’” and

113 ”

a binary operation “ — ” as follows:

1 z |z — (0 a b ¢ 1

c 01 0f1 11 11

alb alb 1 ¢ 11

a b bia bila ¢ 1 11
cl|c cle ¢c ¢c 1 1

> 110 1{0 a b ¢ 1

Define V- and A-operations on L as follows:

zVy:=(zy)y and zAy:=((z'y)y)
for all x,y € L. Then L is a lattice implication algebra. It is easy to see

that F := {b,c, 1} is a lattice filter of L, but it is not a filter of L since
ac=c€ Fanda¢F.

We provide a condition for a lattice filter to a filter.

THEOREM 3.4. In a lattice implication algebra L, every lattice filter
is a filter if and only if the identity x A (xy) = x Ay holds for all x,y € L.

Proof. Suppose that every lattice filter is a filter and let z,y € L.
Clearly, z Ay < z, zy, that is, x A y is a lower bound of x and zy.
Suppose z < z, zy for some z € L. Then z, zy € [z, 1], the interval.
Note that the interval is a lattice filter, and hence a filter by assumption.
It follows from (F4) that y € [2,1]. Thus we have z < z, y, and so
z < z Ay. Therefore z A (zy) = z A y. Conversely, assume that the
identity holds. Let F' be a lattice filter. Obviously, 1 € F. Let z,y € L
be such that z € F and zy € F. Then, by (F2), z A (zy) € F, that is,
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x Ay € F. Since z Ay < y, it follows from (F1) that y € F. Hence F is
a filter of L. O

For any lattice implication algebra L, let P(L) and F(L) denote the
set of all prime lattice filters of L and the set of all prime filters of L,
respectively. By means of Theorem 3.2, we have F(L) C P(L). For any
z €L, let

g={FeF(L)|z¢F}and 2={FecP(L)|z¢F}

Note that Z C &, and {# | z € L} forms a basis for topology on P(L) in
which the compact open sets are precisely these basis elements. Obvi-
ously {Z | € L} forms a basis for the subspace topology on F(L).

LeEMMA 3.5. (Liu and Xu [2, Theorem 4]|) Let L be a lattice impli-
cation algebra, F a proper filter of L and A a lattice ideal of L. If
F N A=0, then there exists a prime filter P of L such that F' C P and
PNA=0.

COROLLARY 3.6. For any = # 1, there exists F' € F(L) such that
z ¢ F, that is, F' € T.

Proof. Take the filter {1} and the lattice ideal A = [0,z]. They
are disjoint, and so by Lemma 3.5 there exists F € F(L) such that
¢ F. O

THEOREM 3.7. Let L be a lattice implication algebra. Then F(L) is
dense in P(L).

Proof. We need to show that the topological closure of (L) is P(L).
Let F € P(L) and let Z be any basic neighborhood of F. Then z ¢ F,
and x # 1. By Corollary 3.6, there exists G € F(L) such that z ¢ G,
that is, G € T C Z. Hence every basic neighborhood of every element of
P(L) intersects F(L), that is, (L) is dense in P(L). O

THEOREM 3.8. Let F' be a proper filter of a lattice implication algebra
L. Then
F=({GeF(L)|FcG}.

Proof. Since F is proper, we can find z ¢ F. If we take A = [0, z], we
have a lattice ideal which is disjoint from F. Using Lemma 3.5, there
exists G € F(L) such that F' C G. Clearly

Fc({GeF(L)|FcG}

Assume that F # [{G € F(L) | F C G}. Then there exists ¢ F and
z € ({G € F(L) | F C G}. Taking the lattice ideal A = [0, z], we can
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find G € F(L) such that F C G and GN A = §. This contradicts the
fact that ¢ € GG, and proves the theorem. O

THEOREM 3.9. Let L be a lattice implication algebra. Then the
following statements are equivalent.

(a) F(L) is Hausdorff.

(b) For each z € L, T is both open and closed in F(L).

(c) F(L) is a Boolean space.

(d) For each z € L, there existsy € L such that tVy =1and z Ay
does not belong to any prime filter of L.

Proof. (a) = (b) Note that for each z € L, Z is compact in F(L).
Since F(L) is Hausdorff, it follows that Z is closed in F(L). But Z is
open in F(L). Hence Z is both open and closed in F(L).

(b) = (c) We have that {Z | z € L} is a basis for the topology of
F(L) consisting of sets that are both open and closed, and hence F(L)
is Hausdorff and totally disconnected. Since F(L) = 0 is compact, it
follows that F(L) is a Boolean space.

(c) = (d) Since F(L) is a Boolean space, it has a basis for the topology
consisting of sets that are both open and closed. Hence each member
of the basis is compact and open. This means that each member of the
~ basis is of the form Z for some z € L. Now, for each a € L, @ is a union
of some of these sets Z in the basis, and since @ is compact, we can find
a finite subcovering. But a finite union of closed sets is closed. Hence
@ is an open and closed subset of F(L). Thus, for each z € L, Z is
an open and closed subset of F(L), and so its set theoretic complement
F(L)\ z is also both open and closed. Since F(L) is compact, F(L)\ Z
is also compact and open, and thus it is of the form § for some y € L.
Therefore ZNy =0 and ZU § = F(L). This means that z Vy =1 and
z Ay does not belong to any prime filter of L.

(d) = (a) Suppose (d) holds. Then ZNy = 0 and ZU G = F(L).
Hence z = F(L) \ g which is a closed subset of (L), and therefore for
each z € L, T is both open and closed in F(L). Since {Z |z € L} is a
basis for the topology on F(L), it follows that F(L) is Hausdorff. O
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